SMLE: Safe Machine Learning via Embedded Overapproximation
- URL: http://arxiv.org/abs/2409.20517v1
- Date: Mon, 30 Sep 2024 17:19:57 GMT
- Title: SMLE: Safe Machine Learning via Embedded Overapproximation
- Authors: Matteo Francobaldi, Michele Lombardi,
- Abstract summary: We consider the task of training differentiable ML models guaranteed to satisfy designer-chosen properties.
This is very challenging, due to the computational complexity of rigorously verifying and enforcing compliance in modern neural models.
We provide an innovative approach based on three components: 1) a general, simple architecture enabling efficient verification with a conservative semantic.
We evaluate our approach on properties defined by linear inequalities in regression, and on mutually exclusive classes in multilabel classification.
- Score: 4.129133569151574
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Despite the extent of recent advances in Machine Learning (ML) and Neural Networks, providing formal guarantees on the behavior of these systems is still an open problem, and a crucial requirement for their adoption in regulated or safety-critical scenarios. We consider the task of training differentiable ML models guaranteed to satisfy designer-chosen properties, stated as input-output implications. This is very challenging, due to the computational complexity of rigorously verifying and enforcing compliance in modern neural models. We provide an innovative approach based on three components: 1) a general, simple architecture enabling efficient verification with a conservative semantic; 2) a rigorous training algorithm based on the Projected Gradient Method; 3) a formulation of the problem of searching for strong counterexamples. The proposed framework, being only marginally affected by model complexity, scales well to practical applications, and produces models that provide full property satisfaction guarantees. We evaluate our approach on properties defined by linear inequalities in regression, and on mutually exclusive classes in multilabel classification. Our approach is competitive with a baseline that includes property enforcement during preprocessing, i.e. on the training data, as well as during postprocessing, i.e. on the model predictions. Finally, our contributions establish a framework that opens up multiple research directions and potential improvements.
Related papers
- Taming Polysemanticity in LLMs: Provable Feature Recovery via Sparse Autoencoders [50.52694757593443]
Existing SAE training algorithms often lack rigorous mathematical guarantees and suffer from practical limitations.<n>We first propose a novel statistical framework for the feature recovery problem, which includes a new notion of feature identifiability.<n>We introduce a new SAE training algorithm based on bias adaptation'', a technique that adaptively adjusts neural network bias parameters to ensure appropriate activation sparsity.
arXiv Detail & Related papers (2025-06-16T20:58:05Z) - A Theory of Inference Compute Scaling: Reasoning through Directed Stochastic Skill Search [15.387256204743407]
Large language models (LLMs) demand considerable computational, energy, and financial resources during both training and deployment.<n>Inference costs now represent a significant and growing component of the overall resource burden.<n>We introduce directed skill search (DS3), a general framework that represents inference as expressive over a learned skill graph.
arXiv Detail & Related papers (2025-06-10T14:47:48Z) - Neural Network Reprogrammability: A Unified Theme on Model Reprogramming, Prompt Tuning, and Prompt Instruction [55.914891182214475]
We introduce neural network reprogrammability as a unifying framework for model adaptation.<n>We present a taxonomy that categorizes such information manipulation approaches across four key dimensions.<n>We also analyze remaining technical challenges and ethical considerations.
arXiv Detail & Related papers (2025-06-05T05:42:27Z) - Enforcing Hard Linear Constraints in Deep Learning Models with Decision Rules [8.098452803458253]
This paper proposes a model-agnostic framework for enforcing input-dependent linear equality and inequality constraints on neural network outputs.<n>The architecture combines a task network trained for prediction accuracy with a safe network trained using decision rules from the runtime and robust optimization to ensure feasibility across the entire input space.
arXiv Detail & Related papers (2025-05-20T03:09:44Z) - CSE-SFP: Enabling Unsupervised Sentence Representation Learning via a Single Forward Pass [3.0566617373924325]
Recent advances in pre-trained language models (PLMs) have driven remarkable progress in this field.
We propose CSE-SFP, an innovative method that exploits the structural characteristics of generative models.
We show that CSE-SFP not only produces higher-quality embeddings but also significantly reduces both training time and memory consumption.
arXiv Detail & Related papers (2025-05-01T08:27:14Z) - Beyond Scaling: Measuring and Predicting the Upper Bound of Knowledge Retention in Language Model Pre-Training [51.41246396610475]
This paper aims to predict performance in closed-book question answering (QA) without the help of external tools.<n>We conduct large-scale retrieval and semantic analysis across the pre-training corpora of 21 publicly available and 3 custom-trained large language models.<n>Building on these foundations, we propose Size-dependent Mutual Information (SMI), an information-theoretic metric that linearly correlates pre-training data characteristics.
arXiv Detail & Related papers (2025-02-06T13:23:53Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.
By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.
Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
We introduce an untrained forward model residual block within the model-based architecture to match the data consistency in the measurement domain for each instance.
Our approach offers a unified solution that is less parameter-sensitive, requires no additional data, and enables simultaneous fitting of the forward model and reconstruction in a single pass.
arXiv Detail & Related papers (2024-03-07T19:02:13Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
We argue that the key to better performance lies in meaningful latent modality structures instead of perfect modality alignment.
Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization.
arXiv Detail & Related papers (2023-03-10T14:38:49Z) - Boosting Low-Data Instance Segmentation by Unsupervised Pre-training
with Saliency Prompt [103.58323875748427]
This work offers a novel unsupervised pre-training solution for low-data regimes.
Inspired by the recent success of the Prompting technique, we introduce a new pre-training method that boosts QEIS models.
Experimental results show that our method significantly boosts several QEIS models on three datasets.
arXiv Detail & Related papers (2023-02-02T15:49:03Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Adaptive Discretization in Online Reinforcement Learning [9.560980936110234]
Two major questions in designing discretization-based algorithms are how to create the discretization and when to refine it.
We provide a unified theoretical analysis of tree-based hierarchical partitioning methods for online reinforcement learning.
Our algorithms are easily adapted to operating constraints, and our theory provides explicit bounds across each of the three facets.
arXiv Detail & Related papers (2021-10-29T15:06:15Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.