Multimodal Large Language Models with Fusion Low Rank Adaptation for Device Directed Speech Detection
- URL: http://arxiv.org/abs/2406.09617v1
- Date: Thu, 13 Jun 2024 22:52:07 GMT
- Title: Multimodal Large Language Models with Fusion Low Rank Adaptation for Device Directed Speech Detection
- Authors: Shruti Palaskar, Oggi Rudovic, Sameer Dharur, Florian Pesce, Gautam Krishna, Aswin Sivaraman, Jack Berkowitz, Ahmed Hussen Abdelaziz, Saurabh Adya, Ahmed Tewfik,
- Abstract summary: Large Language Models (LLMs) have shown promise for human-like conversations but are primarily pre-trained on text data.
We propose a Fusion Low Rank Adaptation (FLoRA) technique that efficiently adapts a pre-trained unimodal LLM to consume new, previously unseen modalities.
For device-directed speech detection, using FLoRA, the multimodal LLM achieves 22% relative reduction in equal error rate (EER) over the text-only approach.
- Score: 8.683288452838136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although Large Language Models (LLMs) have shown promise for human-like conversations, they are primarily pre-trained on text data. Incorporating audio or video improves performance, but collecting large-scale multimodal data and pre-training multimodal LLMs is challenging. To this end, we propose a Fusion Low Rank Adaptation (FLoRA) technique that efficiently adapts a pre-trained unimodal LLM to consume new, previously unseen modalities via low rank adaptation. For device-directed speech detection, using FLoRA, the multimodal LLM achieves 22% relative reduction in equal error rate (EER) over the text-only approach and attains performance parity with its full fine-tuning (FFT) counterpart while needing to tune only a fraction of its parameters. Furthermore, with the newly introduced adapter dropout, FLoRA is robust to missing data, improving over FFT by 20% lower EER and 56% lower false accept rate. The proposed approach scales well for model sizes from 16M to 3B parameters.
Related papers
- HSplitLoRA: A Heterogeneous Split Parameter-Efficient Fine-Tuning Framework for Large Language Models [30.345920952847752]
Large language models (LLMs) have achieved remarkable breakthroughs, revolutionizing the natural language processing domain and beyond.<n>Due to immense parameter sizes, fine-tuning these models with private data for diverse downstream tasks has become mainstream.<n>We propose HSplitLoRA, a framework built on split learning (SL) and low-rank adaptation (LoRA) fine-tuning, for efficiently fine-tuning LLMs on heterogeneous client devices.
arXiv Detail & Related papers (2025-05-05T17:09:19Z) - Small Models, Big Impact: Efficient Corpus and Graph-Based Adaptation of Small Multilingual Language Models for Low-Resource Languages [10.418542753869433]
Low-resource languages (LRLs) face significant challenges in natural language processing (NLP) due to limited data.
Current state-of-the-art large language models (LLMs) still struggle with LRLs.
Small multilingual models (mLMs) such as mBERT and XLM-R offer greater promise due to a better fit of their capacity to low training data sizes.
arXiv Detail & Related papers (2025-02-14T13:10:39Z) - Transducer-Llama: Integrating LLMs into Streamable Transducer-based Speech Recognition [26.79555533538622]
This paper proposes a novel model architecture, Transducer-Llama, that integrates large language models (LLMs) into a Factorized Transducer (FT) model.
The proposed streaming Transducer-Llama approach gave a 17% relative WER reduction (WERR) over a strong FT baseline and a 32% WERR over an RNN-T baseline.
arXiv Detail & Related papers (2024-12-21T03:35:49Z) - DLP-LoRA: Efficient Task-Specific LoRA Fusion with a Dynamic, Lightweight Plugin for Large Language Models [10.179598253424103]
Large Language Models (LLMs) have achieved robust performance across diverse tasks, but fine-tuning these models for specific domains remains resource-intensive.
We propose a mini-MLP module with only 5M parameters to dynamically fuse multiple LoRAs at the sentence level using top-p sampling strategies.
This approach reduces inference time to less than twice that of single LoRA inference by leveraging parallel computation.
arXiv Detail & Related papers (2024-10-02T12:45:52Z) - FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low-Rank Adaptations [39.88985198467528]
We introduce a new approach called FLORA that enables federated fine-tuning on heterogeneous LoRA adapters.
Our approach is noise-free and seamlessly supports heterogeneous LoRA adapters.
arXiv Detail & Related papers (2024-09-09T18:21:23Z) - Minor SFT loss for LLM fine-tune to increase performance and reduce model deviation [9.506166330956082]
We propose a training metric for SFT to measure the discrepancy between the optimized model and the original model, and a loss function MinorSFT that can increase the training effectiveness.
In this article with insight from DPO and MinorDPO, we propose a training metric for SFT to measure the discrepancy between the optimized model and the original model, and a loss function MinorSFT that can increase the training effectiveness.
arXiv Detail & Related papers (2024-08-20T08:32:44Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - LiveMind: Low-latency Large Language Models with Simultaneous Inference [9.795240210326346]
We introduce LiveMind, a novel low-latency inference framework for large language model (LLM) inference.
By reallocating computational processes to the input phase, a substantial reduction in latency is achieved.
The framework adeptly manages the visibility of the streaming input to the model, allowing it to infer from incomplete user input or await additional content.
arXiv Detail & Related papers (2024-06-20T13:52:30Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes [53.4856038354195]
Pre-trained large language models (LLMs) need fine-tuning to improve their responsiveness to natural language instructions.
FedKSeed employs zeroth-order optimization with a finite set of random seeds.
It significantly reduces transmission requirements between the server and clients to just a few random seeds.
arXiv Detail & Related papers (2023-12-11T13:03:21Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - Cheap and Quick: Efficient Vision-Language Instruction Tuning for Large
Language Models [77.2078051555533]
We propose a novel and affordable solution for the effective VL adaption of large language models (LLMs)
Instead of using large neural networks to connect the image encoder and LLM, MMA adopts lightweight modules, i.e., adapters.
MMA is also equipped with a routing algorithm to help LLMs achieve an automatic shift between single- and multi-modal instructions.
arXiv Detail & Related papers (2023-05-24T11:06:15Z) - Adapted Multimodal BERT with Layer-wise Fusion for Sentiment Analysis [84.12658971655253]
We propose Adapted Multimodal BERT, a BERT-based architecture for multimodal tasks.
adapter adjusts the pretrained language model for the task at hand, while the fusion layers perform task-specific, layer-wise fusion of audio-visual information with textual BERT representations.
In our ablations we see that this approach leads to efficient models, that can outperform their fine-tuned counterparts and are robust to input noise.
arXiv Detail & Related papers (2022-12-01T17:31:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.