FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low-Rank Adaptations
- URL: http://arxiv.org/abs/2409.05976v1
- Date: Mon, 9 Sep 2024 18:21:23 GMT
- Title: FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low-Rank Adaptations
- Authors: Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Lingjuan Lyu, Ang Li,
- Abstract summary: We introduce a new approach called FLORA that enables federated fine-tuning on heterogeneous LoRA adapters.
Our approach is noise-free and seamlessly supports heterogeneous LoRA adapters.
- Score: 39.88985198467528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients' local data through in-situ computation, eliminating the need for data movement. However, fine-tuning LLMs, given their massive scale of parameters, poses challenges for clients with constrained and heterogeneous resources in FL. Previous methods employed low-rank adaptation (LoRA) for efficient federated fine-tuning but utilized traditional FL aggregation strategies on LoRA adapters. These approaches led to mathematically inaccurate aggregation noise, reducing fine-tuning effectiveness and failing to address heterogeneous LoRAs. In this work, we first highlight the mathematical incorrectness of LoRA aggregation in existing federated fine-tuning methods. We introduce a new approach called FLORA that enables federated fine-tuning on heterogeneous LoRA adapters across clients through a novel stacking-based aggregation method. Our approach is noise-free and seamlessly supports heterogeneous LoRA adapters. Extensive experiments demonstrate FLORA' s superior performance in both homogeneous and heterogeneous settings, surpassing state-of-the-art methods. We envision this work as a milestone for efficient, privacy-preserving, and accurate federated fine-tuning of LLMs. Our code is available at https://github.com/ATP-1010/FederatedLLM.
Related papers
- Why Gradient Subspace? Identifying and Mitigating LoRA's Bottlenecks in Federated Fine-Tuning of Large Language Models [21.953204885495573]
This paper critically analyzes the convergence and performance guarantees of popular FL frameworks utilizing Low-Rank Adaptation (LoRA)
We demonstrate that direct weight averaging outperforms LoRA-based strategies, leading to superior performance for fine-tuned models.
Our findings show that GaLore is a more effective alternative, outperforming federated LoRA methods like FlexLoRA and FFA-LoRA across both text and image modalities.
arXiv Detail & Related papers (2024-10-30T15:23:44Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Exact Aggregation for Federated and Efficient Fine-Tuning of Foundation Models [5.1613368481802455]
Low-Rank Adaptation (LoRA) is a popular technique for efficient fine-tuning of foundation models.
We propose Federated Exact LoRA, or FedEx-LoRA, which adds a residual error term to the pretrained frozen weight matrix.
Our approach achieves exact updates with minimal computational and communication overhead, preserving LoRA's efficiency.
arXiv Detail & Related papers (2024-10-12T08:22:44Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) is an efficient way to fine-tune models by optimizing only a low-rank matrix.
A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance.
We propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - BA-LoRA: Bias-Alleviating Low-Rank Adaptation to Mitigate Catastrophic Inheritance in Large Language Models [13.660511750245245]
This work introduces Bias-Alleviating Low-Rank Adaptation (BA-LoRA), a novel PEFT method designed to counteract bias inheritance.
BA-LoRA incorporates three distinct regularization terms: (1) a consistency regularizer, (2) a diversity regularizer, and (3) a singular value decomposition regularizer.
The results demonstrate that BA-LoRA outperforms LoRA and its state-of-the-art variants.
arXiv Detail & Related papers (2024-08-08T16:13:26Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.
Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.
We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - Improving LoRA in Privacy-preserving Federated Learning [44.47315926976059]
Low-rank adaptation (LoRA) is one of the most popular task-specific parameter-efficient fine-tuning (PEFT) methods on pre-trained language models.
This paper proposes an efficient and effective version of LoRA, Federated Freeze A LoRA (FFA-LoRA), to alleviate these challenges.
arXiv Detail & Related papers (2024-03-18T23:20:08Z) - Heterogeneous LoRA for Federated Fine-tuning of On-Device Foundation
Models [20.707283766914017]
HetLoRA allows heterogeneous ranks across client devices and efficiently aggregates and distributes these heterogeneous LoRA modules.
HetLoRA achieves improved convergence speed and final performance compared to homogeneous LoRA.
arXiv Detail & Related papers (2024-01-12T07:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.