A Survey of Video Datasets for Grounded Event Understanding
- URL: http://arxiv.org/abs/2406.09646v1
- Date: Fri, 14 Jun 2024 00:36:55 GMT
- Title: A Survey of Video Datasets for Grounded Event Understanding
- Authors: Kate Sanders, Benjamin Van Durme,
- Abstract summary: multimodal AI systems must be capable of well-rounded common-sense reasoning akin to human visual understanding.
We survey 105 video datasets that require event understanding capability.
- Score: 34.11140286628736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While existing video benchmarks largely consider specialized downstream tasks like retrieval or question-answering (QA), contemporary multimodal AI systems must be capable of well-rounded common-sense reasoning akin to human visual understanding. A critical component of human temporal-visual perception is our ability to identify and cognitively model "things happening", or events. Historically, video benchmark tasks have implicitly tested for this ability (e.g., video captioning, in which models describe visual events with natural language), but they do not consider video event understanding as a task in itself. Recent work has begun to explore video analogues to textual event extraction but consists of competing task definitions and datasets limited to highly specific event types. Therefore, while there is a rich domain of event-centric video research spanning the past 10+ years, it is unclear how video event understanding should be framed and what resources we have to study it. In this paper, we survey 105 video datasets that require event understanding capability, consider how they contribute to the study of robust event understanding in video, and assess proposed video event extraction tasks in the context of this body of research. We propose suggestions informed by this survey for dataset curation and task framing, with an emphasis on the uniquely temporal nature of video events and ambiguity in visual content.
Related papers
- Grounding Partially-Defined Events in Multimodal Data [61.0063273919745]
We introduce a multimodal formulation for partially-defined events and cast the extraction of these events as a three-stage span retrieval task.
We propose a benchmark for this task, MultiVENT-G, that consists of 14.5 hours of densely annotated current event videos and 1,168 text documents, containing 22.8K labeled event-centric entities.
Results illustrate the challenges that abstract event understanding poses and demonstrates promise in event-centric video-language systems.
arXiv Detail & Related papers (2024-10-07T17:59:48Z) - EA-VTR: Event-Aware Video-Text Retrieval [97.30850809266725]
Event-Aware Video-Text Retrieval model achieves powerful video-text retrieval ability through superior video event awareness.
EA-VTR can efficiently encode frame-level and video-level visual representations simultaneously, enabling detailed event content and complex event temporal cross-modal alignment.
arXiv Detail & Related papers (2024-07-10T09:09:58Z) - Contextual Explainable Video Representation:\\Human Perception-based
Understanding [10.172332586182792]
We discuss approaches that incorporate the human perception process into modeling actors, objects, and the environment.
We choose video paragraph captioning and temporal action detection to illustrate the effectiveness of human perception based-contextual representation in video understanding.
arXiv Detail & Related papers (2022-12-12T19:29:07Z) - QVHighlights: Detecting Moments and Highlights in Videos via Natural
Language Queries [89.24431389933703]
We present the Query-based Video Highlights (QVHighlights) dataset.
It consists of over 10,000 YouTube videos, covering a wide range of topics.
Each video in the dataset is annotated with: (1) a human-written free-form NL query, (2) relevant moments in the video w.r.t. the query, and (3) five-point scale saliency scores for all query-relevant clips.
arXiv Detail & Related papers (2021-07-20T16:42:58Z) - Spoken Moments: Learning Joint Audio-Visual Representations from Video
Descriptions [75.77044856100349]
We present the Spoken Moments dataset of 500k spoken captions each attributed to a unique short video depicting a broad range of different events.
We show that our AMM approach consistently improves our results and that models trained on our Spoken Moments dataset generalize better than those trained on other video-caption datasets.
arXiv Detail & Related papers (2021-05-10T16:30:46Z) - iPerceive: Applying Common-Sense Reasoning to Multi-Modal Dense Video
Captioning and Video Question Answering [0.0]
We propose iPer, a framework capable of understanding the "why" between events in a video.
We demonstrate the effectiveness of iPerceive and VideoQA as machine translation problems.
Our approach furthers the state-of-the-art in visual understanding.
arXiv Detail & Related papers (2020-11-16T05:44:45Z) - VIOLIN: A Large-Scale Dataset for Video-and-Language Inference [103.7457132841367]
We introduce a new task, Video-and-Language Inference, for joint multimodal understanding of video and text.
Given a video clip with subtitles aligned as premise, paired with a natural language hypothesis based on the video content, a model needs to infer whether the hypothesis is entailed or contradicted by the given video clip.
A new large-scale dataset, named Violin (VIdeO-and-Language INference), is introduced for this task, which consists of 95,322 video-hypothesis pairs from 15,887 video clips.
arXiv Detail & Related papers (2020-03-25T20:39:05Z) - Convolutional Hierarchical Attention Network for Query-Focused Video
Summarization [74.48782934264094]
This paper addresses the task of query-focused video summarization, which takes user's query and a long video as inputs.
We propose a method, named Convolutional Hierarchical Attention Network (CHAN), which consists of two parts: feature encoding network and query-relevance computing module.
In the encoding network, we employ a convolutional network with local self-attention mechanism and query-aware global attention mechanism to learns visual information of each shot.
arXiv Detail & Related papers (2020-01-31T04:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.