OpenAnimalTracks: A Dataset for Animal Track Recognition
- URL: http://arxiv.org/abs/2406.09647v1
- Date: Fri, 14 Jun 2024 00:37:17 GMT
- Title: OpenAnimalTracks: A Dataset for Animal Track Recognition
- Authors: Risa Shinoda, Kaede Shiohara,
- Abstract summary: We introduce OpenAnimalTracks dataset, the first publicly available labeled dataset designed to facilitate the automated classification and detection of animal footprints.
We show the potential of automated footprint identification with representative classifiers and detection models.
We hope our dataset paves the way for automated animal tracking techniques, enhancing our ability to protect and manage biodiversity.
- Score: 2.3020018305241337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Animal habitat surveys play a critical role in preserving the biodiversity of the land. One of the effective ways to gain insights into animal habitats involves identifying animal footprints, which offers valuable information about species distribution, abundance, and behavior. However, due to the scarcity of animal footprint images, there are no well-maintained public datasets, preventing recent advanced techniques in computer vision from being applied to animal tracking. In this paper, we introduce OpenAnimalTracks dataset, the first publicly available labeled dataset designed to facilitate the automated classification and detection of animal footprints. It contains various footprints from 18 wild animal species. Moreover, we build benchmarks for species classification and detection and show the potential of automated footprint identification with representative classifiers and detection models. We find SwinTransformer achieves a promising classification result, reaching 69.41% in terms of the averaged accuracy. Faster-RCNN achieves mAP of 0.295. We hope our dataset paves the way for automated animal tracking techniques, enhancing our ability to protect and manage biodiversity. Our dataset and code are available at https://github.com/dahlian00/OpenAnimalTracks.
Related papers
- BuckTales : A multi-UAV dataset for multi-object tracking and re-identification of wild antelopes [0.6267336085190178]
BuckTales is the first large-scale UAV dataset designed to solve multi-object tracking and re-identification problem in wild animals.
The MOT dataset includes over 1.2 million annotations including 680 tracks across 12 high-resolution (5.4K) videos.
The Re-ID dataset includes 730 individuals captured with two UAVs simultaneously.
arXiv Detail & Related papers (2024-11-11T11:55:14Z) - Metadata augmented deep neural networks for wild animal classification [4.466592229376465]
This study introduces a novel approach that enhances wild animal classification by combining specific metadata with image data.
Using a dataset focused on the Norwegian climate, our models show an accuracy increase from 98.4% to 98.9% compared to existing methods.
arXiv Detail & Related papers (2024-09-07T13:36:26Z) - PetFace: A Large-Scale Dataset and Benchmark for Animal Identification [2.3020018305241337]
We introduce the PetFace dataset, a comprehensive resource for animal face identification.
PetFace includes 257,484 unique individuals across 13 animal families and 319 breed categories, including both experimental and pet animals.
We provide benchmarks including re-identification for seen individuals and verification for unseen individuals.
arXiv Detail & Related papers (2024-07-18T14:28:31Z) - Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
Motion-activated camera traps constitute an efficient tool for tracking and monitoring wildlife populations across the globe.
Supervised learning techniques have been successfully deployed to analyze such imagery, however training such techniques requires annotations from experts.
Reducing the reliance on costly labelled data has immense potential in developing large-scale wildlife tracking solutions with markedly less human labor.
arXiv Detail & Related papers (2023-11-02T08:32:00Z) - APT-36K: A Large-scale Benchmark for Animal Pose Estimation and Tracking [77.87449881852062]
APT-36K is the first large-scale benchmark for animal pose estimation and tracking.
It consists of 2,400 video clips collected and filtered from 30 animal species with 15 frames for each video, resulting in 36,000 frames in total.
We benchmark several representative models on the following three tracks: (1) supervised animal pose estimation on a single frame under intra- and inter-domain transfer learning settings, (2) inter-species domain generalization test for unseen animals, and (3) animal pose estimation with animal tracking.
arXiv Detail & Related papers (2022-06-12T07:18:36Z) - Persistent Animal Identification Leveraging Non-Visual Markers [71.14999745312626]
We aim to locate and provide a unique identifier for each mouse in a cluttered home-cage environment through time.
This is a very challenging problem due to (i) the lack of distinguishing visual features for each mouse, and (ii) the close confines of the scene with constant occlusion.
Our approach achieves 77% accuracy on this animal identification problem, and is able to reject spurious detections when the animals are hidden.
arXiv Detail & Related papers (2021-12-13T17:11:32Z) - AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs
in the Wild [51.35013619649463]
We present an extensive dataset of free-running cheetahs in the wild, called AcinoSet.
The dataset contains 119,490 frames of multi-view synchronized high-speed video footage, camera calibration files and 7,588 human-annotated frames.
The resulting 3D trajectories, human-checked 3D ground truth, and an interactive tool to inspect the data is also provided.
arXiv Detail & Related papers (2021-03-24T15:54:11Z) - Unifying data for fine-grained visual species classification [15.14767769034929]
We present an initial deep convolutional neural network model, trained on 2.9M images across 465 fine-grained species.
The long-term goal is to enable scientists to make conservation recommendations from near real-time analysis of species abundance and population health.
arXiv Detail & Related papers (2020-09-24T01:04:18Z) - Automatic Detection and Recognition of Individuals in Patterned Species [4.163860911052052]
We develop a framework for automatic detection and recognition of individuals in different patterned species.
We use the recently proposed Faster-RCNN object detection framework to efficiently detect animals in images.
We evaluate our recognition system on zebra and jaguar images to show generalization to other patterned species.
arXiv Detail & Related papers (2020-05-06T15:29:21Z) - Transferring Dense Pose to Proximal Animal Classes [83.84439508978126]
We show that it is possible to transfer the knowledge existing in dense pose recognition for humans, as well as in more general object detectors and segmenters, to the problem of dense pose recognition in other classes.
We do this by establishing a DensePose model for the new animal which is also geometrically aligned to humans.
We also introduce two benchmark datasets labelled in the manner of DensePose for the class chimpanzee and use them to evaluate our approach.
arXiv Detail & Related papers (2020-02-28T21:43:53Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.