論文の概要: Evaluating ChatGPT-4 Vision on Brazil's National Undergraduate Computer Science Exam
- arxiv url: http://arxiv.org/abs/2406.09671v1
- Date: Fri, 14 Jun 2024 02:42:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 15:23:26.428758
- Title: Evaluating ChatGPT-4 Vision on Brazil's National Undergraduate Computer Science Exam
- Title(参考訳): ブラジルの国立大学コンピュータサイエンス科におけるChatGPT-4ビジョンの評価
- Authors: Nabor C. Mendonça,
- Abstract要約: 本研究では,OpenAIの最も先進的な視覚モデルであるChatGPT-4 Visionの性能について検討する。
試験のオープンで複数選択の質問を元の画像形式で提示することで,モデルの推論能力と自己回帰能力を評価することができた。
ChatGPT-4 Visionは、平均的な試験受験者よりも優れており、スコアパーセンタイルのトップ10に入っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent integration of visual capabilities into Large Language Models (LLMs) has the potential to play a pivotal role in science and technology education, where visual elements such as diagrams, charts, and tables are commonly used to improve the learning experience. This study investigates the performance of ChatGPT-4 Vision, OpenAI's most advanced visual model at the time the study was conducted, on the Bachelor in Computer Science section of Brazil's 2021 National Undergraduate Exam (ENADE). By presenting the model with the exam's open and multiple-choice questions in their original image format and allowing for reassessment in response to differing answer keys, we were able to evaluate the model's reasoning and self-reflecting capabilities in a large-scale academic assessment involving textual and visual content. ChatGPT-4 Vision significantly outperformed the average exam participant, positioning itself within the top 10 best score percentile. While it excelled in questions that incorporated visual elements, it also encountered challenges with question interpretation, logical reasoning, and visual acuity. The involvement of an independent expert panel to review cases of disagreement between the model and the answer key revealed some poorly constructed questions containing vague or ambiguous statements, calling attention to the critical need for improved question design in future exams. Our findings suggest that while ChatGPT-4 Vision shows promise in multimodal academic evaluations, human oversight remains crucial for verifying the model's accuracy and ensuring the fairness of high-stakes educational exams. The paper's research materials are publicly available at https://github.com/nabormendonca/gpt-4v-enade-cs-2021.
- Abstract(参考訳): 近年のLLM(Large Language Models)への視覚的能力の統合は、学習体験を改善するために、図、チャート、テーブルなどの視覚的要素が一般的に使用される科学と技術教育において重要な役割を果たす可能性がある。
本研究は,2021年ブラジル国立大学院試験場(ENADE)のコンピュータ科学部門で行った,OpenAIの最も先進的な視覚モデルChatGPT-4 Visionの性能について検討した。
そこで,本研究では,テストのオープンかつ複数選択の質問を元の画像形式で提示し,回答キーの相違に応答して再評価を行うことで,テキストおよび視覚コンテンツを含む大規模学術的評価において,モデルの推論と自己認識能力を評価することができた。
ChatGPT-4 Visionは、平均的な試験受験者よりも優れており、スコアパーセンタイルのトップ10に入っている。
視覚的要素を取り入れた質問には優れていたが、疑問解釈、論理的推論、視覚的明度といった問題にも遭遇した。
モデルと回答キー間の不一致の事例をレビューするために、独立した専門家パネルが関与したことは、曖昧さや曖昧さを含む未解決の疑問がいくつか浮き彫りになり、将来の試験における質問設計の改善に対する批判的な必要性に注意を向けた。
以上の結果から,ChatGPT-4 Visionはマルチモーダル・アカデミック・アセスメントにおいて有望であるが,人間の監視はモデルの精度を検証し,ハイテイクな教育試験の公正性の確保に不可欠であることが示唆された。
研究資料はhttps://github.com/nabormendonca/gpt-4v-enade-cs-2021で公開されている。
関連論文リスト
- MRAG-Bench: Vision-Centric Evaluation for Retrieval-Augmented Multimodal Models [115.16022378880376]
MRAG-Benchというマルチモーダル検索拡張生成ベンチマークを導入する。
MRAG-Benchは16,130枚の画像と1,353個の人間による複数の質問からなる。
その結果,すべての大規模視覚言語モデル (LVLM) は,テキスト知識と比較して画像で拡張すると改善が見られた。
論文 参考訳(メタデータ) (2024-10-10T17:55:02Z) - Putting GPT-4o to the Sword: A Comprehensive Evaluation of Language, Vision, Speech, and Multimodal Proficiency [3.161954199291541]
本研究は, GPT-4oの言語, 視覚, 音声, マルチモーダル能力を包括的に評価する。
GPT-4oは、言語と推論能力において、複数のドメインにわたる高い精度と効率を示す。
モデルは可変性を示し、複雑であいまいな入力を扱う際の制限に直面している。
論文 参考訳(メタデータ) (2024-06-19T19:00:21Z) - Realizing Visual Question Answering for Education: GPT-4V as a Multimodal AI [0.6278186810520364]
画像データの質的な分析と説明は、機械による自動化なしに人間の研究者によって行われてきた。
最近のVisual Question Answering (VQA)技術は、使用可能なビジュアル言語モデルを実現している。
本稿では,教育研究のためのVQAの導入を目標とし,教育研究方法論のマイルストーンを提供する。
論文 参考訳(メタデータ) (2024-05-12T05:05:31Z) - Assessing the Aesthetic Evaluation Capabilities of GPT-4 with Vision:
Insights from Group and Individual Assessments [2.539875353011627]
本研究は,画像の美的評価課題に対するビジョン付きGPT-4の性能について検討する。
我々は,グループの平均評価値と個人の評価値の予測という2つのタスクを採用する。
GPT-4は美的評価の予測に優れた性能を示し,美容と美容に対する異なる反応の性質を示した。
論文 参考訳(メタデータ) (2024-03-06T10:27:09Z) - ConTextual: Evaluating Context-Sensitive Text-Rich Visual Reasoning in Large Multimodal Models [92.60282074937305]
テキストリッチな画像に対して文脈に敏感な推論を必要とする人為的な命令を特徴とする新しいデータセットであるConTextualを紹介した。
そこで本研究では,14の基盤モデルの性能評価実験を行い,人為的な性能基準を確立する。
GPT-4Vとヒトのパフォーマンスの30.8%の有意な性能差を観察した。
論文 参考訳(メタデータ) (2024-01-24T09:07:11Z) - Gemini vs GPT-4V: A Preliminary Comparison and Combination of
Vision-Language Models Through Qualitative Cases [98.35348038111508]
本稿では,Google の Gemini と OpenAI の GPT-4V(ision) の2つのパイオニアモデルについて,詳細な比較研究を行った。
分析の核となるのは、各モデルの視覚的理解能力である。
両モデルのユニークな強みとニッチを照らし出した。
論文 参考訳(メタデータ) (2023-12-22T18:59:58Z) - Evaluating GPT-4's Vision Capabilities on Brazilian University Admission
Exams [14.801853435122908]
本稿では,文章要素と視覚要素の両方を組み込んだ,入学試験における言語モデルの評価フレームワークを提案する。
ブラジルの大学が採用している入学試験であるExame Nacional do Ensino M'edio(ENEM)の2つの最新版を評価した。
ハイライトの1つは、視覚コンテンツを翻訳するテキストキャプションが画像の直接使用よりも優れており、視覚モデルに改善の余地があることである。
論文 参考訳(メタデータ) (2023-11-23T19:20:59Z) - Q-Instruct: Improving Low-level Visual Abilities for Multi-modality
Foundation Models [81.20804369985376]
我々は,低レベルの視覚に対する多数の人間のフィードバックを収集する大規模主観的実験を行う。
構築された**Q-Pathway**データセットには、18,973イメージに関する58万の詳細な人間のフィードバックが含まれている。
我々は、GPT参加型変換を設計し、これらのフィードバックを多種多様な200K命令応答対に処理する。
論文 参考訳(メタデータ) (2023-11-12T09:10:51Z) - Lost in Translation: When GPT-4V(ision) Can't See Eye to Eye with Text.
A Vision-Language-Consistency Analysis of VLLMs and Beyond [7.760124498553333]
視覚言語モデルが連続的・独立的に視覚と言語タスクを実行するかを検討する。
マルチモーダル設定において、異なるモーダル間の能力格差を定量化する体系的枠組みを導入する。
本稿では,視覚関連課題に挑戦するタスクのパフォーマンスを効果的に向上する手法である"Vision Description Prompting"を紹介する。
論文 参考訳(メタデータ) (2023-10-19T06:45:11Z) - MathVista: Evaluating Mathematical Reasoning of Foundation Models in
Visual Contexts [170.01089233942594]
MathVistaは、様々な数学的タスクと視覚的タスクの課題を組み合わせるために設計されたベンチマークである。
最高のパフォーマンスのGPT-4Vモデルは全体の49.9%の精度を達成し、第2位のパフォーマーであるBardを15.1%上回った。
GPT-4Vは、複雑な数字を理解し、厳格な推論を行うのに苦戦しているため、人間のパフォーマンスが10.4%下がったままである。
論文 参考訳(メタデータ) (2023-10-03T17:57:24Z) - Can Pre-trained Vision and Language Models Answer Visual
Information-Seeking Questions? [50.29862466940209]
情報検索に適した視覚的質問応答データセットであるInfoSeekを紹介する。
事前学習した様々な視覚的質問応答モデルを分析し,その特徴について考察する。
関連文書を検索することでInfoSeekの性能を向上させるために,正確な視覚的実体認識が利用できることを示す。
論文 参考訳(メタデータ) (2023-02-23T00:33:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。