Heterogeneous Federated Learning with Convolutional and Spiking Neural Networks
- URL: http://arxiv.org/abs/2406.09680v1
- Date: Fri, 14 Jun 2024 03:05:05 GMT
- Title: Heterogeneous Federated Learning with Convolutional and Spiking Neural Networks
- Authors: Yingchao Yu, Yuping Yan, Jisong Cai, Yaochu Jin,
- Abstract summary: Federated learning (FL) has emerged as a promising paradigm for training models on decentralized data.
This work benchmarks FL systems containing both convoluntional neural networks (CNNs) and biologically more plausible spiking neural networks (SNNs)
Experimental results demonstrate that the CNN-SNN fusion framework exhibits the best performance.
- Score: 17.210940028586588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has emerged as a promising paradigm for training models on decentralized data while safeguarding data privacy. Most existing FL systems, however, assume that all machine learning models are of the same type, although it becomes more likely that different edge devices adopt different types of AI models, including both conventional analogue artificial neural networks (ANNs) and biologically more plausible spiking neural networks (SNNs). This diversity empowers the efficient handling of specific tasks and requirements, showcasing the adaptability and versatility of edge computing platforms. One main challenge of such heterogeneous FL system lies in effectively aggregating models from the local devices in a privacy-preserving manner. To address the above issue, this work benchmarks FL systems containing both convoluntional neural networks (CNNs) and SNNs by comparing various aggregation approaches, including federated CNNs, federated SNNs, federated CNNs for SNNs, federated SNNs for CNNs, and federated CNNs with SNN fusion. Experimental results demonstrate that the CNN-SNN fusion framework exhibits the best performance among the above settings on the MNIST dataset. Additionally, intriguing phenomena of competitive suppression are noted during the convergence process of multi-model FL.
Related papers
- Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection.
We show that SNNs trained with dynamic sparse training (DST) algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
arXiv Detail & Related papers (2024-08-08T16:48:33Z) - Spiking Neural Networks in Vertical Federated Learning: Performance Trade-offs [2.1756721838833797]
Federated machine learning enables model training across multiple clients.
Vertical Federated Learning (VFL) deals with instances where the clients have different feature sets of the same samples.
Spiking Neural Networks (SNNs) are being leveraged to enable fast and accurate processing at the edge.
arXiv Detail & Related papers (2024-07-24T23:31:02Z) - A Hierarchical Fused Quantum Fuzzy Neural Network for Image Classification [8.7057403071943]
We proposed a novel hierarchical fused quantum fuzzy neural network (HQFNN)
HQFNN uses quantum neural networks to learn fuzzy membership functions in fuzzy neural network.
Results show that the proposed model can outperform several existing methods.
arXiv Detail & Related papers (2024-03-14T12:09:36Z) - Interpretable Neural Networks with Random Constructive Algorithm [3.1200894334384954]
This paper introduces an Interpretable Neural Network (INN) incorporating spatial information to tackle the opaque parameterization process of random weighted neural networks.
It devises a geometric relationship strategy using a pool of candidate nodes and established relationships to select node parameters conducive to network convergence.
arXiv Detail & Related papers (2023-07-01T01:07:20Z) - Real Spike: Learning Real-valued Spikes for Spiking Neural Networks [11.580346172925323]
Brain-inspired spiking neural networks (SNNs) have recently drawn more and more attention due to their event-driven and energy-efficient characteristics.
In this paper, we argue that SNNs may not benefit from the weight-sharing mechanism, which can effectively reduce parameters and improve inference efficiency.
Motivated by this assumption, a training-inference decoupling method for SNNs named as Real Spike is proposed.
arXiv Detail & Related papers (2022-10-13T02:45:50Z) - Linear Leaky-Integrate-and-Fire Neuron Model Based Spiking Neural
Networks and Its Mapping Relationship to Deep Neural Networks [7.840247953745616]
Spiking neural networks (SNNs) are brain-inspired machine learning algorithms with merits such as biological plausibility and unsupervised learning capability.
This paper establishes a precise mathematical mapping between the biological parameters of the Linear Leaky-Integrate-and-Fire model (LIF)/SNNs and the parameters of ReLU-AN/Deep Neural Networks (DNNs)
arXiv Detail & Related papers (2022-05-31T17:02:26Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Joint Superposition Coding and Training for Federated Learning over
Multi-Width Neural Networks [52.93232352968347]
This paper aims to integrate two synergetic technologies, federated learning (FL) and width-adjustable slimmable neural network (SNN)
FL preserves data privacy by exchanging the locally trained models of mobile devices. SNNs are however non-trivial, particularly under wireless connections with time-varying channel conditions.
We propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models.
arXiv Detail & Related papers (2021-12-05T11:17:17Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
Recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs)
In this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the Synaptic Plasticity paradigm that poses the essential learning theory in biological neurons.
Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs.
arXiv Detail & Related papers (2020-08-21T19:03:23Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.