論文の概要: AnimalFormer: Multimodal Vision Framework for Behavior-based Precision Livestock Farming
- arxiv url: http://arxiv.org/abs/2406.09711v1
- Date: Fri, 14 Jun 2024 04:42:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 15:13:35.093565
- Title: AnimalFormer: Multimodal Vision Framework for Behavior-based Precision Livestock Farming
- Title(参考訳): AnimalFormer:行動に基づく精密家畜飼育のためのマルチモーダルビジョンフレームワーク
- Authors: Ahmed Qazi, Taha Razzaq, Asim Iqbal,
- Abstract要約: 精密畜産のためのマルチモーダルビジョン・フレームワークを提案する。
我々は、GroundingDINO、HQSAM、ViTPoseモデルのパワーを利用する。
このスイートは、侵入的な動物タグ付けをすることなく、ビデオデータから包括的な行動分析を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce a multimodal vision framework for precision livestock farming, harnessing the power of GroundingDINO, HQSAM, and ViTPose models. This integrated suite enables comprehensive behavioral analytics from video data without invasive animal tagging. GroundingDINO generates accurate bounding boxes around livestock, while HQSAM segments individual animals within these boxes. ViTPose estimates key body points, facilitating posture and movement analysis. Demonstrated on a sheep dataset with grazing, running, sitting, standing, and walking activities, our framework extracts invaluable insights: activity and grazing patterns, interaction dynamics, and detailed postural evaluations. Applicable across species and video resolutions, this framework revolutionizes non-invasive livestock monitoring for activity detection, counting, health assessments, and posture analyses. It empowers data-driven farm management, optimizing animal welfare and productivity through AI-powered behavioral understanding.
- Abstract(参考訳): 本稿では,FundingDINO,HQSAM,ViTPoseモデルのパワーを活用した,精密家畜養殖のためのマルチモーダルビジョンフレームワークを提案する。
この統合スイートは、侵入的な動物タグ付けをすることなく、ビデオデータから包括的な行動分析を可能にする。
GroundingDINOは家畜のまわりに正確なバウンディングボックスを生成し、HQSAMはそれらの箱の中に個々の動物を分割する。
ViTPoseは、姿勢と運動の分析を容易にするために、キーボディーポイントを推定する。
ヒツジの放牧, ランニング, 座位, 立位, 歩行行動のデータセットから, 行動と放牧パターン, インタラクションのダイナミクス, 詳細な姿勢評価など, 貴重な知見を抽出した。
種やビデオの解像度で適用可能なこのフレームワークは、活動の検出、カウント、健康評価、姿勢分析のための非侵襲的な家畜モニタリングに革命をもたらす。
データ駆動型農業経営の強化、AIによる行動理解による動物福祉と生産性の最適化。
関連論文リスト
- PoseBench: Benchmarking the Robustness of Pose Estimation Models under Corruptions [57.871692507044344]
ポース推定は、単眼画像を用いて人や動物の解剖学的キーポイントを正確に同定することを目的としている。
現在のモデルは一般的に、クリーンなデータに基づいてトレーニングされ、テストされる。
実世界の腐敗に対するポーズ推定モデルの堅牢性を評価するためのベンチマークであるPoseBenchを紹介する。
論文 参考訳(メタデータ) (2024-06-20T14:40:17Z) - Public Computer Vision Datasets for Precision Livestock Farming: A Systematic Survey [3.3651853492305177]
本研究は,家畜のCVデータセットの公開に関する最初の体系的な調査である。
58の公開データセットのうち、ほぼ半分は牛用で、続いて豚、鶏、その他の動物が続く。
個人の動物検出とカラーイメージングは、家畜にとって主要な応用であり、画像のモダリティである。
論文 参考訳(メタデータ) (2024-06-15T13:22:41Z) - Computer Vision for Primate Behavior Analysis in the Wild [61.08941894580172]
ビデオに基づく行動監視は、動物の認知と行動を研究する方法を変える大きな可能性を秘めている。
今でも、エキサイティングな見通しと、今日実際に達成できるものの間には、かなり大きなギャップがある。
論文 参考訳(メタデータ) (2024-01-29T18:59:56Z) - APTv2: Benchmarking Animal Pose Estimation and Tracking with a
Large-scale Dataset and Beyond [27.50166679588048]
APTv2は動物のポーズ推定と追跡のための大規模ベンチマークのパイオニアである。
ビデオクリップは2,749本で、30種の動物から抽出・収集されている。
我々は,84,611種の動物インスタンスに対して高品質なキーポイントと追跡アノテーションを提供する。
論文 参考訳(メタデータ) (2023-12-25T04:49:49Z) - CattleEyeView: A Multi-task Top-down View Cattle Dataset for Smarter
Precision Livestock Farming [6.291219495092237]
CattleEyeViewデータセットは、最初のトップダウンビューマルチタスク牛のビデオデータセットである。
データセットには、30,703フレームで753種類のトップダウン牛のインスタンスが含まれている。
我々は,各タスクに対するモデルの性能を評価するためのベンチマーク実験を行った。
論文 参考訳(メタデータ) (2023-12-14T09:18:02Z) - Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
モーションアクティベートカメラトラップは、世界中の野生生物を追跡・監視するための効率的なツールである。
教師付き学習技術は、そのような画像を分析するためにうまく展開されているが、そのような訓練には専門家のアノテーションが必要である。
コストのかかるラベル付きデータへの依存を減らすことは、人間の労働力を大幅に減らした大規模野生生物追跡ソリューションを開発する上で、大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-11-02T08:32:00Z) - MABe22: A Multi-Species Multi-Task Benchmark for Learned Representations
of Behavior [28.878568752724235]
学習行動表現の質を評価するベンチマークであるMABe22を紹介する。
このデータセットは様々な生物学実験から収集される。
我々は,自己教師付きビデオとトラジェクトリ表現学習法を試行し,ベンチマークの利用を実証した。
論文 参考訳(メタデータ) (2022-07-21T15:51:30Z) - APT-36K: A Large-scale Benchmark for Animal Pose Estimation and Tracking [77.87449881852062]
APT-36Kは動物のポーズ推定と追跡のための最初の大規模ベンチマークである。
このビデオは、30種の動物から収集・フィルタリングされた2,400のビデオクリップと、各ビデオの15フレームで構成されており、合計で36,000フレームとなっている。
我々は,(1)ドメイン内およびドメイン間移動学習環境下での単一フレームでの動物ポーズ推定,(2)未確認動物に対する種間ドメイン一般化テスト,(3)動物追跡による動物ポーズ推定の3つのモデルについて,いくつかの代表的モデルをベンチマークした。
論文 参考訳(メタデータ) (2022-06-12T07:18:36Z) - Persistent Animal Identification Leveraging Non-Visual Markers [71.14999745312626]
乱雑なホームケージ環境下で各マウスにユニークな識別子を時間をかけて発見し提供することを目的としている。
これは、(i)各マウスの視覚的特徴の区別の欠如、(ii)一定の閉塞を伴うシーンの密閉性のため、非常に難しい問題である。
本手法は, この動物識別問題に対して77%の精度を達成し, 動物が隠れているときの急激な検出を拒否することができる。
論文 参考訳(メタデータ) (2021-12-13T17:11:32Z) - Livestock Monitoring with Transformer [4.298326853567677]
我々は,集団飼育豚を対象としたエンドツーエンド行動監視システムを開発し,インスタンスレベルのセグメンテーション,トラッキング,行動認識,再識別タスクを同時実施する。
本稿では, トランスフォーマーアーキテクチャを用いて, グループ豚のインスタンスレベルの埋め込みを学習する, エンドツーエンド多目的家畜監視フレームワークであるStarformerについて紹介する。
論文 参考訳(メタデータ) (2021-11-01T10:03:49Z) - Muti-view Mouse Social Behaviour Recognition with Deep Graphical Model [124.26611454540813]
マウスの社会的行動分析は神経変性疾患の治療効果を評価する貴重なツールである。
マウスの社会行動の豊かな記述を創出する可能性から、ネズミの観察にマルチビュービデオ記録を使用することは、ますます注目を集めている。
本稿では,ビュー固有のサブ構造とビュー共有サブ構造を協調的に学習する,新しい多視点潜在意識・動的識別モデルを提案する。
論文 参考訳(メタデータ) (2020-11-04T18:09:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。