Full-reference Point Cloud Quality Assessment Using Spectral Graph Wavelets
- URL: http://arxiv.org/abs/2406.09762v1
- Date: Fri, 14 Jun 2024 06:59:54 GMT
- Title: Full-reference Point Cloud Quality Assessment Using Spectral Graph Wavelets
- Authors: Ryosuke Watanabe, Keisuke Nonaka, Eduardo Pavez, Tatsuya Kobayashi, Antonio Ortega,
- Abstract summary: Point clouds in 3D applications frequently experience quality degradation during processing, e.g., scanning and compression.
This paper introduces a full-reference (FR) PCQA method utilizing spectral graph wavelets (SGWs)
To our knowledge, this is the first study to introduce SGWs for PCQA.
- Score: 29.126056066012264
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Point clouds in 3D applications frequently experience quality degradation during processing, e.g., scanning and compression. Reliable point cloud quality assessment (PCQA) is important for developing compression algorithms with good bitrate-quality trade-offs and techniques for quality improvement (e.g., denoising). This paper introduces a full-reference (FR) PCQA method utilizing spectral graph wavelets (SGWs). First, we propose novel SGW-based PCQA metrics that compare SGW coefficients of coordinate and color signals between reference and distorted point clouds. Second, we achieve accurate PCQA by integrating several conventional FR metrics and our SGW-based metrics using support vector regression. To our knowledge, this is the first study to introduce SGWs for PCQA. Experimental results demonstrate the proposed PCQA metric is more accurately correlated with subjective quality scores compared to conventional PCQA metrics.
Related papers
- No-Reference Point Cloud Quality Assessment via Graph Convolutional Network [89.12589881881082]
Three-dimensional (3D) point cloud, as an emerging visual media format, is increasingly favored by consumers.
Point clouds inevitably suffer from quality degradation and information loss through multimedia communication systems.
We propose a novel no-reference PCQA method by using a graph convolutional network (GCN) to characterize the mutual dependencies of multi-view 2D projected image contents.
arXiv Detail & Related papers (2024-11-12T11:39:05Z) - Full reference point cloud quality assessment using support vector regression [27.462663794942756]
This paper presents an accurate full-reference point cloud quality assessment (FR-PCQA) method called full-reference quality assessment using support vector regression (FRSVR)
The proposed method achieves a superior trade-off between accuracy and calculation speed because it includes only the calculation of these five simple metrics and SVR.
Experimental results with three types of open datasets show that the proposed method is more accurate than conventional FR-PCQA methods.
arXiv Detail & Related papers (2024-06-15T06:22:26Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-reference point cloud quality assessment (NR-PCQA) aims to automatically evaluate the perceptual quality of distorted point clouds without available reference.
We propose a novel contrastive pre-training framework tailored for PCQA (CoPA)
Our method outperforms the state-of-the-art PCQA methods on popular benchmarks.
arXiv Detail & Related papers (2024-03-15T07:16:07Z) - Simple Baselines for Projection-based Full-reference and No-reference
Point Cloud Quality Assessment [60.2709006613171]
We propose simple baselines for projection-based point cloud quality assessment (PCQA)
We use multi-projections obtained via a common cube-like projection process from the point clouds for both full-reference (FR) and no-reference (NR) PCQA tasks.
Taking part in the ICIP 2023 PCVQA Challenge, we succeeded in achieving the top spot in four out of the five competition tracks.
arXiv Detail & Related papers (2023-10-26T04:42:57Z) - Weight Re-Mapping for Variational Quantum Algorithms [54.854986762287126]
We introduce the concept of weight re-mapping for variational quantum circuits (VQCs)
We employ seven distinct weight re-mapping functions to assess their impact on eight classification datasets.
Our results indicate that weight re-mapping can enhance the convergence speed of the VQC.
arXiv Detail & Related papers (2023-06-09T09:42:21Z) - No-Reference Point Cloud Quality Assessment via Weighted Patch Quality
Prediction [19.128878108831287]
We propose a no-reference point cloud quality assessment (NR-PCQA) method with local area correlation analysis capability, denoted as COPP-Net.
More specifically, we split a point cloud into patches, generate texture and structure features for each patch, and fuse them into patch features to predict patch quality.
Experimental results show that our method outperforms the state-of-the-art benchmark NR-PCQA methods.
arXiv Detail & Related papers (2023-05-13T03:20:33Z) - GPA-Net:No-Reference Point Cloud Quality Assessment with Multi-task
Graph Convolutional Network [35.381247959766505]
We propose a novel no-reference PCQA metric named the Graph convolutional PCQA network (GPA-Net)
To extract effective features for PCQA, we propose a new graph convolution kernel, i.e., GPAConv, which attentively captures the perturbation of structure and texture.
Experimental results on two independent databases show that GPA-Net achieves the best performance compared to the state-of-the-art no-reference PCQA metrics.
arXiv Detail & Related papers (2022-10-29T03:06:55Z) - Point Cloud Quality Assessment using 3D Saliency Maps [37.290843791053256]
We propose an effective full-reference PCQA metric which makes the first attempt to utilize the saliency information to facilitate quality prediction.
Specifically, we first propose a projection-based point cloud saliency map generation method, in which depth information is introduced to better reflect the geometric characteristics of point clouds.
Finally, a saliency-based pooling strategy is proposed to generate the final quality score.
arXiv Detail & Related papers (2022-09-30T13:59:09Z) - Task-Specific Normalization for Continual Learning of Blind Image
Quality Models [105.03239956378465]
We present a simple yet effective continual learning method for blind image quality assessment (BIQA)
The key step in our approach is to freeze all convolution filters of a pre-trained deep neural network (DNN) for an explicit promise of stability.
We assign each new IQA dataset (i.e., task) a prediction head, and load the corresponding normalization parameters to produce a quality score.
The final quality estimate is computed by black a weighted summation of predictions from all heads with a lightweight $K$-means gating mechanism.
arXiv Detail & Related papers (2021-07-28T15:21:01Z) - Reduced Reference Perceptual Quality Model and Application to Rate
Control for 3D Point Cloud Compression [61.110938359555895]
In rate-distortion optimization, the encoder settings are determined by maximizing a reconstruction quality measure subject to a constraint on the bit rate.
We propose a linear perceptual quality model whose variables are the V-PCC geometry and color quantization parameters.
Subjective quality tests with 400 compressed 3D point clouds show that the proposed model correlates well with the mean opinion score.
We show that for the same target bit rate, ratedistortion optimization based on the proposed model offers higher perceptual quality than rate-distortion optimization based on exhaustive search with a point-to-point objective quality metric.
arXiv Detail & Related papers (2020-11-25T12:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.