Full reference point cloud quality assessment using support vector regression
- URL: http://arxiv.org/abs/2406.10520v1
- Date: Sat, 15 Jun 2024 06:22:26 GMT
- Title: Full reference point cloud quality assessment using support vector regression
- Authors: Ryosuke Watanabe, Shashank N. Sridhara, Haoran Hong, Eduardo Pavez, Keisuke Nonaka, Tatsuya Kobayashi, Antonio Ortega,
- Abstract summary: This paper presents an accurate full-reference point cloud quality assessment (FR-PCQA) method called full-reference quality assessment using support vector regression (FRSVR)
The proposed method achieves a superior trade-off between accuracy and calculation speed because it includes only the calculation of these five simple metrics and SVR.
Experimental results with three types of open datasets show that the proposed method is more accurate than conventional FR-PCQA methods.
- Score: 27.462663794942756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point clouds are a general format for representing realistic 3D objects in diverse 3D applications. Since point clouds have large data sizes, developing efficient point cloud compression methods is crucial. However, excessive compression leads to various distortions, which deteriorates the point cloud quality perceived by end users. Thus, establishing reliable point cloud quality assessment (PCQA) methods is essential as a benchmark to develop efficient compression methods. This paper presents an accurate full-reference point cloud quality assessment (FR-PCQA) method called full-reference quality assessment using support vector regression (FRSVR) for various types of degradations such as compression distortion, Gaussian noise, and down-sampling. The proposed method demonstrates accurate PCQA by integrating five FR-based metrics covering various types of errors (e.g., considering geometric distortion, color distortion, and point count) using support vector regression (SVR). Moreover, the proposed method achieves a superior trade-off between accuracy and calculation speed because it includes only the calculation of these five simple metrics and SVR, which can perform fast prediction. Experimental results with three types of open datasets show that the proposed method is more accurate than conventional FR-PCQA methods. In addition, the proposed method is faster than state-of-the-art methods that utilize complicated features such as curvature and multi-scale features. Thus, the proposed method provides excellent performance in terms of the accuracy of PCQA and processing speed. Our method is available from https://github.com/STAC-USC/FRSVR-PCQA.
Related papers
- Full-reference Point Cloud Quality Assessment Using Spectral Graph Wavelets [29.126056066012264]
Point clouds in 3D applications frequently experience quality degradation during processing, e.g., scanning and compression.
This paper introduces a full-reference (FR) PCQA method utilizing spectral graph wavelets (SGWs)
To our knowledge, this is the first study to introduce SGWs for PCQA.
arXiv Detail & Related papers (2024-06-14T06:59:54Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-reference point cloud quality assessment (NR-PCQA) aims to automatically evaluate the perceptual quality of distorted point clouds without available reference.
We propose a novel contrastive pre-training framework tailored for PCQA (CoPA)
Our method outperforms the state-of-the-art PCQA methods on popular benchmarks.
arXiv Detail & Related papers (2024-03-15T07:16:07Z) - Activating Frequency and ViT for 3D Point Cloud Quality Assessment
without Reference [0.49157446832511503]
We propose no-reference quality metric of a given 3D-PC.
To map the input attributes to quality score, we use a light-weight hybrid deep model; combined of Deformable Convolutional Network (DCN) and Vision Transformers (ViT)
The results show that our approach outperforms state-of-the-art NR-PCQA measures and even some FR-PCQA on PointXR.
arXiv Detail & Related papers (2023-12-10T19:13:34Z) - Simple Baselines for Projection-based Full-reference and No-reference
Point Cloud Quality Assessment [60.2709006613171]
We propose simple baselines for projection-based point cloud quality assessment (PCQA)
We use multi-projections obtained via a common cube-like projection process from the point clouds for both full-reference (FR) and no-reference (NR) PCQA tasks.
Taking part in the ICIP 2023 PCVQA Challenge, we succeeded in achieving the top spot in four out of the five competition tracks.
arXiv Detail & Related papers (2023-10-26T04:42:57Z) - GMS-3DQA: Projection-based Grid Mini-patch Sampling for 3D Model Quality
Assessment [82.93561866101604]
Previous projection-based 3DQA methods directly extract features from multi-projections to ensure quality prediction accuracy.
We propose a no-reference (NR) projection-based textitunderlineGrid underlineMini-patch underlineSampling underline3D Model underlineQuality underlineAssessment (GMS-3DQA) method.
The proposed GMS-3DQA requires far less computational resources and inference time than other 3D
arXiv Detail & Related papers (2023-06-09T03:53:12Z) - Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent
with Learned Distance Functions [77.32043242988738]
We propose a new framework for accurate point cloud upsampling that supports arbitrary upsampling rates.
Our method first interpolates the low-res point cloud according to a given upsampling rate.
arXiv Detail & Related papers (2023-04-24T06:36:35Z) - GraphReg: Dynamical Point Cloud Registration with Geometry-aware Graph
Signal Processing [0.0]
This study presents a high-accuracy, efficient, and physically induced method for 3D point cloud registration.
We explore geometry aware rigid-body dynamics to regulate the particle (point) motion, which results in more precise and robust registration.
Results demonstrate that our proposed method outperforms state-of-the-art approaches in terms of accuracy and is more suitable for registering large-scale point clouds.
arXiv Detail & Related papers (2023-02-02T14:06:46Z) - TCDM: Transformational Complexity Based Distortion Metric for Perceptual
Point Cloud Quality Assessment [24.936061591860838]
The goal of objective point cloud quality assessment (PCQA) research is to develop metrics that measure point cloud quality in a consistent manner.
We evaluate the point cloud quality by measuring the complexity of transforming the distorted point cloud back to its reference.
The effectiveness of the proposed transformational complexity based distortion metric (TCDM) is evaluated through extensive experiments conducted on five public point cloud quality assessment databases.
arXiv Detail & Related papers (2022-10-10T13:20:51Z) - Evaluating Point Cloud from Moving Camera Videos: A No-Reference Metric [58.309735075960745]
This paper explores the way of dealing with point cloud quality assessment (PCQA) tasks via video quality assessment (VQA) methods.
We generate the captured videos by rotating the camera around the point clouds through several circular pathways.
We extract both spatial and temporal quality-aware features from the selected key frames and the video clips through using trainable 2D-CNN and pre-trained 3D-CNN models.
arXiv Detail & Related papers (2022-08-30T08:59:41Z) - Reduced Reference Perceptual Quality Model and Application to Rate
Control for 3D Point Cloud Compression [61.110938359555895]
In rate-distortion optimization, the encoder settings are determined by maximizing a reconstruction quality measure subject to a constraint on the bit rate.
We propose a linear perceptual quality model whose variables are the V-PCC geometry and color quantization parameters.
Subjective quality tests with 400 compressed 3D point clouds show that the proposed model correlates well with the mean opinion score.
We show that for the same target bit rate, ratedistortion optimization based on the proposed model offers higher perceptual quality than rate-distortion optimization based on exhaustive search with a point-to-point objective quality metric.
arXiv Detail & Related papers (2020-11-25T12:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.