論文の概要: I Know How: Combining Prior Policies to Solve New Tasks
- arxiv url: http://arxiv.org/abs/2406.09835v1
- Date: Fri, 14 Jun 2024 08:44:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 14:34:29.388234
- Title: I Know How: Combining Prior Policies to Solve New Tasks
- Title(参考訳): プライオリティを組み合わせて新しい課題を解決する方法
- Authors: Malio Li, Elia Piccoli, Vincenzo Lomonaco, Davide Bacciu,
- Abstract要約: マルチタスク強化学習は、継続的に進化し、新しいシナリオに適応できるエージェントを開発することを目的としている。
新しいタスクごとにスクラッチから学ぶことは、実行可能な、あるいは持続可能な選択肢ではない。
我々は、共通の形式を提供する新しいフレームワーク、I Know Howを提案する。
- 参考スコア(独自算出の注目度): 17.214443593424498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-Task Reinforcement Learning aims at developing agents that are able to continually evolve and adapt to new scenarios. However, this goal is challenging to achieve due to the phenomenon of catastrophic forgetting and the high demand of computational resources. Learning from scratch for each new task is not a viable or sustainable option, and thus agents should be able to collect and exploit prior knowledge while facing new problems. While several methodologies have attempted to address the problem from different perspectives, they lack a common structure. In this work, we propose a new framework, I Know How (IKH), which provides a common formalization. Our methodology focuses on modularity and compositionality of knowledge in order to achieve and enhance agent's ability to learn and adapt efficiently to dynamic environments. To support our framework definition, we present a simple application of it in a simulated driving environment and compare its performance with that of state-of-the-art approaches.
- Abstract(参考訳): マルチタスク強化学習は、継続的に進化し、新しいシナリオに適応できるエージェントを開発することを目的としている。
しかし、このゴールは破滅的な忘れ込み現象と計算資源の高需要のため達成が難しい。
新しいタスクのスクラッチから学ぶことは、実行可能なあるいは持続可能な選択肢ではないため、エージェントは新しい問題に直面しながら、事前の知識を収集し、活用することができるべきである。
いくつかの方法論は異なる観点からこの問題に対処しようと試みてきたが、それらは共通の構造を欠いている。
本稿では,IKH(I Know How)というフレームワークを提案する。
本手法は,エージェントの学習能力と動的環境への適応性を高めるために,知識のモジュール性と構成性に重点を置いている。
フレームワークの定義をサポートするため、シミュレーション駆動環境においてその簡単な応用を提示し、その性能を最先端のアプローチと比較する。
関連論文リスト
- Reinforcement Learning with Options and State Representation [105.82346211739433]
この論文は、強化学習分野を探求し、改良された手法を構築することを目的としている。
階層的強化学習(Hierarchical Reinforcement Learning)として知られる階層的な方法で学習タスクを分解することで、そのような目標に対処する。
論文 参考訳(メタデータ) (2024-03-16T08:30:55Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
本研究では,連続学習のタスク非依存的な視点を取り入れ,階層的情報理論の最適性原理を考案する。
我々は,情報処理経路の集合を作成することで,忘れを緩和する,Mixture-of-Variational-Experts層と呼ばれるニューラルネットワーク層を提案する。
既存の連続学習アルゴリズムのようにタスク固有の知識を必要としない。
論文 参考訳(メタデータ) (2022-11-14T19:53:15Z) - Transferring Knowledge for Reinforcement Learning in Contact-Rich
Manipulation [10.219833196479142]
複数のスキルの前提を活かして、類似したタスクのファミリー内で知識を伝達するという課題に対処する。
提案手法は, 先行タスク毎の実証軌道から, スキル埋め込みを表す潜在行動空間を学習する。
我々は,ペグ・イン・ホール・イン・イン・イン・イン・イン・イン・イン・イン・イン・インサート・タスクのセットを用いて本手法の評価を行い,トレーニング中に遭遇したことのない新しいタスクへのより良い一般化を実証した。
論文 参考訳(メタデータ) (2022-09-19T10:31:13Z) - Latent Skill Planning for Exploration and Transfer [49.25525932162891]
本稿では,この2つの手法を1つの強化学習エージェントに統合する方法について検討する。
テスト時の高速適応に部分的償却の考え方を活用する。
私たちは、困難なロコモーションタスクのスイートでデザイン決定のメリットを実演しています。
論文 参考訳(メタデータ) (2020-11-27T18:40:03Z) - Learn to Bind and Grow Neural Structures [0.3553493344868413]
我々は、新しいタスクのためのニューラルアーキテクチャを漸進的に学習する新しいフレームワーク、Learning to Bind and Growを紹介する。
私たちのアプローチの中心は、共有マルチタスクアーキテクチャ空間の新しい、解釈可能な、パラメータ化です。
連続学習ベンチマークの実験により、我々のフレームワークは、以前の拡張ベースのアプローチと相容れない性能を示した。
論文 参考訳(メタデータ) (2020-11-21T09:40:26Z) - Behavior Priors for Efficient Reinforcement Learning [97.81587970962232]
本稿では,情報とアーキテクチャの制約を,確率論的モデリング文献のアイデアと組み合わせて行動の事前学習を行う方法について考察する。
このような潜伏変数の定式化が階層的強化学習(HRL)と相互情報と好奇心に基づく目的との関係について論じる。
シミュレーションされた連続制御領域に適用することで,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-10-27T13:17:18Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
政治外学習の最近の進歩の上に構築された,概念的にシンプルで,汎用的で,モジュール的な補完的アプローチについて検討する。
このフレームワークは確率論的推論文学のアイデアにインスパイアされ、堅牢な非政治学習と事前の行動を組み合わせる。
提案手法は,メタ強化学習ベースラインと比較して,ホールドアウトタスクにおける競合適応性能を実現し,複雑なスパース・リワードシナリオにスケールすることができる。
論文 参考訳(メタデータ) (2020-09-10T14:16:58Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
本稿では,テスト時にアウト・オブ・ディストリビューション・タスクに直面した場合に,効率よく外挿できるメタ強化学習アルゴリズムを提案する。
我々の手法は単純な洞察に基づいており、動的モデルが非政治データに効率的かつ一貫して適応可能であることを認識している。
論文 参考訳(メタデータ) (2020-06-12T13:34:46Z) - Automated Relational Meta-learning [95.02216511235191]
本稿では,クロスタスク関係を自動的に抽出し,メタ知識グラフを構築する自動リレーショナルメタ学習フレームワークを提案する。
我々は,2次元玩具の回帰と少数ショット画像分類に関する広範な実験を行い,ARMLが最先端のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-03T07:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。