I Know How: Combining Prior Policies to Solve New Tasks
- URL: http://arxiv.org/abs/2406.09835v1
- Date: Fri, 14 Jun 2024 08:44:51 GMT
- Title: I Know How: Combining Prior Policies to Solve New Tasks
- Authors: Malio Li, Elia Piccoli, Vincenzo Lomonaco, Davide Bacciu,
- Abstract summary: Multi-Task Reinforcement Learning aims at developing agents that are able to continually evolve and adapt to new scenarios.
Learning from scratch for each new task is not a viable or sustainable option.
We propose a new framework, I Know How, which provides a common formalization.
- Score: 17.214443593424498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-Task Reinforcement Learning aims at developing agents that are able to continually evolve and adapt to new scenarios. However, this goal is challenging to achieve due to the phenomenon of catastrophic forgetting and the high demand of computational resources. Learning from scratch for each new task is not a viable or sustainable option, and thus agents should be able to collect and exploit prior knowledge while facing new problems. While several methodologies have attempted to address the problem from different perspectives, they lack a common structure. In this work, we propose a new framework, I Know How (IKH), which provides a common formalization. Our methodology focuses on modularity and compositionality of knowledge in order to achieve and enhance agent's ability to learn and adapt efficiently to dynamic environments. To support our framework definition, we present a simple application of it in a simulated driving environment and compare its performance with that of state-of-the-art approaches.
Related papers
- BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - Reinforcement Learning with Options and State Representation [105.82346211739433]
This thesis aims to explore the reinforcement learning field and build on existing methods to produce improved ones.
It addresses such goals by decomposing learning tasks in a hierarchical fashion known as Hierarchical Reinforcement Learning.
arXiv Detail & Related papers (2024-03-16T08:30:55Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
We take a task-agnostic view of continual learning and develop a hierarchical information-theoretic optimality principle.
We propose a neural network layer, called the Mixture-of-Variational-Experts layer, that alleviates forgetting by creating a set of information processing paths.
Our approach can operate in a task-agnostic way, i.e., it does not require task-specific knowledge, as is the case with many existing continual learning algorithms.
arXiv Detail & Related papers (2022-11-14T19:53:15Z) - Transferring Knowledge for Reinforcement Learning in Contact-Rich
Manipulation [10.219833196479142]
We address the challenge of transferring knowledge within a family of similar tasks by leveraging multiple skill priors.
Our method learns a latent action space representing the skill embedding from demonstrated trajectories for each prior task.
We have evaluated our method on a set of peg-in-hole insertion tasks and demonstrate better generalization to new tasks that have never been encountered during training.
arXiv Detail & Related papers (2022-09-19T10:31:13Z) - Latent Skill Planning for Exploration and Transfer [49.25525932162891]
In this paper, we investigate how these two approaches can be integrated into a single reinforcement learning agent.
We leverage the idea of partial amortization for fast adaptation at test time.
We demonstrate the benefits of our design decisions across a suite of challenging locomotion tasks.
arXiv Detail & Related papers (2020-11-27T18:40:03Z) - Learn to Bind and Grow Neural Structures [0.3553493344868413]
We present a new framework, Learn to Bind and Grow, which learns a neural architecture for a new task incrementally.
Central to our approach is a novel, interpretable, parameterization of the shared, multi-task architecture space.
Experiments on continual learning benchmarks show that our framework performs comparably with earlier expansion based approaches.
arXiv Detail & Related papers (2020-11-21T09:40:26Z) - Behavior Priors for Efficient Reinforcement Learning [97.81587970962232]
We consider how information and architectural constraints can be combined with ideas from the probabilistic modeling literature to learn behavior priors.
We discuss how such latent variable formulations connect to related work on hierarchical reinforcement learning (HRL) and mutual information and curiosity based objectives.
We demonstrate the effectiveness of our framework by applying it to a range of simulated continuous control domains.
arXiv Detail & Related papers (2020-10-27T13:17:18Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
We study a complementary approach which is conceptually simple, general, modular and built on top of recent improvements in off-policy learning.
The framework is inspired by ideas from the probabilistic inference literature and combines robust off-policy learning with a behavior prior.
Our approach achieves competitive adaptation performance on hold-out tasks compared to meta reinforcement learning baselines and can scale to complex sparse-reward scenarios.
arXiv Detail & Related papers (2020-09-10T14:16:58Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
We present a meta-reinforcement learning algorithm that is both efficient and extrapolates well when faced with out-of-distribution tasks at test time.
Our method is based on a simple insight: we recognize that dynamics models can be adapted efficiently and consistently with off-policy data.
arXiv Detail & Related papers (2020-06-12T13:34:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.