論文の概要: Vision-Language Models Meet Meteorology: Developing Models for Extreme Weather Events Detection with Heatmaps
- arxiv url: http://arxiv.org/abs/2406.09838v1
- Date: Fri, 14 Jun 2024 08:46:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 14:24:30.147223
- Title: Vision-Language Models Meet Meteorology: Developing Models for Extreme Weather Events Detection with Heatmaps
- Title(参考訳): 気象学に対応した視覚言語モデル:熱マップを用いた極端気象事象検出モデルの開発
- Authors: Jian Chen, Peilin Zhou, Yining Hua, Dading Chong, Meng Cao, Yaowei Li, Zixuan Yuan, Bing Zhu, Junwei Liang,
- Abstract要約: 極端な気象のリアルタイム検出と予測は、人間の生命とインフラを保護する。
従来の手法は地理情報システム(GIS)を用いた気象熱マップの数値しきい値設定と手動解釈に依存している。
本研究は,視覚質問応答 (VQA) 問題としてフレーミングすることで,極度気象事象検出 (EWED) を再定義する。
- 参考スコア(独自算出の注目度): 30.771706309741656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-time detection and prediction of extreme weather protect human lives and infrastructure. Traditional methods rely on numerical threshold setting and manual interpretation of weather heatmaps with Geographic Information Systems (GIS), which can be slow and error-prone. Our research redefines Extreme Weather Events Detection (EWED) by framing it as a Visual Question Answering (VQA) problem, thereby introducing a more precise and automated solution. Leveraging Vision-Language Models (VLM) to simultaneously process visual and textual data, we offer an effective aid to enhance the analysis process of weather heatmaps. Our initial assessment of general-purpose VLMs (e.g., GPT-4-Vision) on EWED revealed poor performance, characterized by low accuracy and frequent hallucinations due to inadequate color differentiation and insufficient meteorological knowledge. To address these challenges, we introduce ClimateIQA, the first meteorological VQA dataset, which includes 8,760 wind gust heatmaps and 254,040 question-answer pairs covering four question types, both generated from the latest climate reanalysis data. We also propose Sparse Position and Outline Tracking (SPOT), an innovative technique that leverages OpenCV and K-Means clustering to capture and depict color contours in heatmaps, providing ClimateIQA with more accurate color spatial location information. Finally, we present Climate-Zoo, the first meteorological VLM collection, which adapts VLMs to meteorological applications using the ClimateIQA dataset. Experiment results demonstrate that models from Climate-Zoo substantially outperform state-of-the-art general VLMs, achieving an accuracy increase from 0% to over 90% in EWED verification. The datasets and models in this study are publicly available for future climate science research: https://github.com/AlexJJJChen/Climate-Zoo.
- Abstract(参考訳): 極端な気象のリアルタイム検出と予測は、人間の生命とインフラを保護する。
従来の手法は、地理情報システム(GIS)による気象熱マップの数値しきい値の設定と手動による解釈に依存しており、これは遅く、エラーを起こしやすい。
本研究は,視覚質問応答(VQA)問題として,極端気象事象検出(EWED)を再定義し,より正確かつ自動化されたソリューションを提案する。
視覚・言語モデル(VLM)を利用して視覚・テキストデータを同時に処理し,気象熱マップの分析プロセスを強化する。
EWEDにおける汎用VLM (eg , GPT-4-Vision) の初期評価では, 色分化の欠如と気象知識の不足により, 高精度で頻繁な幻覚が特徴であった。
これらの課題に対処するため、第1次気象VQAデータセットであるClimateIQAを導入し、8,760の風洞熱マップと、最新の気候分析データから生成された4つの質問タイプを含む254,040の質問応答ペアを含む。
また,Sparse Position and Outline Tracking (SPOT) も提案する。これはOpenCVとK-Meansクラスタリングを利用して,ヒートマップ内の色輪郭をキャプチャし,描写し,より正確な色空間位置情報を提供する革新的な技術である。
最後に、ClimateIQAデータセットを用いて、VLMを気象応用に適用する最初の気象VLMコレクションであるClimate-Zooを紹介する。
実験の結果,Climate-Zooのモデルは最先端の一般VLMよりも優れており,EWED検証の精度は0%から90%以上向上していることがわかった。
この研究のデータセットとモデルは、将来の気候科学研究のために公開されている。
関連論文リスト
- Advancing Meteorological Forecasting: AI-based Approach to Synoptic Weather Map Analysis [3.686808512438363]
本研究では,新しい事前処理手法と畳み込みオートエンコーダモデルを提案する。
このモデルでは、現在の大気条件にほぼ一致する歴史的シンフォティック気象図を認識できた。
論文 参考訳(メタデータ) (2024-11-08T07:46:50Z) - Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
本研究では,畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)を併用したハイブリッドモデルを提案する。
CNNは空間的特徴抽出に利用され、LSTMは時間的依存を処理し、予測精度と安定性が大幅に向上する。
論文 参考訳(メタデータ) (2024-10-19T03:38:53Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - How far are today's time-series models from real-world weather forecasting applications? [22.68937280154092]
WEATHER-5Kは、現実世界のシナリオをよりよく反映した観測気象データの包括的収集である。
これにより、モデルのより良いトレーニングと、TSFモデルの現実の予測能力のより正確な評価が可能になる。
我々は,学術的TSFモデルと実世界の天気予報アプリケーションとのギャップを,研究者に明確に評価する。
論文 参考訳(メタデータ) (2024-06-20T15:18:52Z) - Advancing Data-driven Weather Forecasting: Time-Sliding Data
Augmentation of ERA5 [3.3748750222488657]
我々は高解像度データへの共通依存から逸脱する新しい戦略を導入する。
本稿では,データ拡張と処理に対する新たなアプローチとして,変数の追加による従来のアプローチの改善について述べる。
その結果, 解像度が低いにもかかわらず, 提案手法は大気条件の予測にかなり精度が高いことがわかった。
論文 参考訳(メタデータ) (2024-02-13T03:01:22Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。