IGL-Bench: Establishing the Comprehensive Benchmark for Imbalanced Graph Learning
- URL: http://arxiv.org/abs/2406.09870v2
- Date: Wed, 19 Jun 2024 07:34:40 GMT
- Title: IGL-Bench: Establishing the Comprehensive Benchmark for Imbalanced Graph Learning
- Authors: Jiawen Qin, Haonan Yuan, Qingyun Sun, Lyujin Xu, Jiaqi Yuan, Pengfeng Huang, Zhaonan Wang, Xingcheng Fu, Hao Peng, Jianxin Li, Philip S. Yu,
- Abstract summary: IGL-Bench is a comprehensive benchmark for imbalanced graph learning.
It investigates state-of-the-art IGL algorithms in terms of effectiveness, robustness, and efficiency on node-level and graph-level tasks.
- Score: 47.34876616533362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep graph learning has gained grand popularity over the past years due to its versatility and success in representing graph data across a wide range of domains. However, the pervasive issue of imbalanced graph data distributions, where certain parts exhibit disproportionally abundant data while others remain sparse, undermines the efficacy of conventional graph learning algorithms, leading to biased outcomes. To address this challenge, Imbalanced Graph Learning (IGL) has garnered substantial attention, enabling more balanced data distributions and better task performance. Despite the proliferation of IGL algorithms, the absence of consistent experimental protocols and fair performance comparisons pose a significant barrier to comprehending advancements in this field. To bridge this gap, we introduce IGL-Bench, a foundational comprehensive benchmark for imbalanced graph learning, embarking on 16 diverse graph datasets and 24 distinct IGL algorithms with uniform data processing and splitting strategies. Specifically, IGL-Bench systematically investigates state-of-the-art IGL algorithms in terms of effectiveness, robustness, and efficiency on node-level and graph-level tasks, with the scope of class-imbalance and topology-imbalance. Extensive experiments demonstrate the potential benefits of IGL algorithms on various imbalanced conditions, offering insights and opportunities in the IGL field. Further, we have developed an open-sourced and unified package to facilitate reproducible evaluation and inspire further innovative research, which is available at https://github.com/RingBDStack/IGL-Bench.
Related papers
- OpenFGL: A Comprehensive Benchmarks for Federated Graph Learning [36.04858706246336]
Federated graph learning (FGL) has emerged as a promising distributed training paradigm for graph neural networks across multiple local systems without direct data sharing.
Despite the proliferation of FGL, the diverse motivations from practical applications, spanning various research backgrounds and experimental settings, pose a significant challenge to fair evaluation.
We propose OpenFGL, a unified benchmark designed for the primary FGL scenarios: Graph-FL and Subgraph-FL.
arXiv Detail & Related papers (2024-08-29T06:40:01Z) - Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization [9.116601683256317]
In this work, we propose a novel framework, called Invariant Graph Learning based on Information bottleneck theory (InfoIGL)
Specifically, InfoIGL introduces a redundancy filter to compress task-irrelevant information related to environmental factors.
Experiments on both synthetic and real-world datasets demonstrate that our method achieves state-of-the-art performance under OOD generalization.
arXiv Detail & Related papers (2024-08-03T07:38:04Z) - On the Generalization Capability of Temporal Graph Learning Algorithms:
Theoretical Insights and a Simpler Method [59.52204415829695]
Temporal Graph Learning (TGL) has become a prevalent technique across diverse real-world applications.
This paper investigates the generalization ability of different TGL algorithms.
We propose a simplified TGL network, which enjoys a small generalization error, improved overall performance, and lower model complexity.
arXiv Detail & Related papers (2024-02-26T08:22:22Z) - Kernel-based Joint Multiple Graph Learning and Clustering of Graph
Signals [2.4305626489408465]
We introduce Kernel-based joint Multiple GL and clustering of graph signals applications.
Experiments demonstrate that KMGL significantly enhances the robustness of GL clustering, particularly in scenarios with high noise levels.
These findings underscore the potential of KMGL for improving the performance of Graph Signal Processing methods in diverse real-world applications.
arXiv Detail & Related papers (2023-10-29T13:41:12Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - Graph Structure Learning with Variational Information Bottleneck [70.62851953251253]
We propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL.
VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks.
arXiv Detail & Related papers (2021-12-16T14:22:13Z) - CogDL: A Comprehensive Library for Graph Deep Learning [55.694091294633054]
We present CogDL, a library for graph deep learning that allows researchers and practitioners to conduct experiments, compare methods, and build applications with ease and efficiency.
In CogDL, we propose a unified design for the training and evaluation of GNN models for various graph tasks, making it unique among existing graph learning libraries.
We develop efficient sparse operators for CogDL, enabling it to become the most competitive graph library for efficiency.
arXiv Detail & Related papers (2021-03-01T12:35:16Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
We propose an end-to-end graph learning framework, namely Iterative Deep Graph Learning (IDGL) for jointly and iteratively learning graph structure and graph embedding.
Our experiments show that our proposed IDGL models can consistently outperform or match the state-of-the-art baselines.
arXiv Detail & Related papers (2020-06-21T19:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.