A Unified Data Augmentation Framework for Low-Resource Multi-Domain Dialogue Generation
- URL: http://arxiv.org/abs/2406.09881v2
- Date: Fri, 28 Jun 2024 12:58:11 GMT
- Title: A Unified Data Augmentation Framework for Low-Resource Multi-Domain Dialogue Generation
- Authors: Yongkang Liu, Ercong Nie, Shi Feng, Zheng Hua, Zifeng Ding, Daling Wang, Yifei Zhang, Hinrich Schütze,
- Abstract summary: Current state-of-the-art dialogue systems heavily rely on extensive training datasets.
We propose a novel data textbfAugmentation framework for textbfMulti-textbfDomain textbfDialogue textbfGeneration, referred to as textbfAMD$2$G.
The AMD$2$G framework consists of a data augmentation process and a two-stage training approach: domain-agnostic training and domain adaptation training.
- Score: 52.0964459842176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current state-of-the-art dialogue systems heavily rely on extensive training datasets. However, challenges arise in domains where domain-specific training datasets are insufficient or entirely absent. To tackle this challenge, we propose a novel data \textbf{A}ugmentation framework for \textbf{M}ulti-\textbf{D}omain \textbf{D}ialogue \textbf{G}eneration, referred to as \textbf{AMD$^2$G}. The AMD$^2$G framework consists of a data augmentation process and a two-stage training approach: domain-agnostic training and domain adaptation training. We posit that domain corpora are a blend of domain-agnostic and domain-specific features, with certain representation patterns shared among diverse domains. Domain-agnostic training aims to enable models to learn these common expressive patterns. To construct domain-agnostic dialogue corpora, we employ a \textit{\textbf{de-domaining}} data processing technique used to remove domain-specific features. By mitigating the effects of domain-specific features, the model trained on the de-domained corpora can effectively learn common expression patterns in different domains. Subsequently, we adapt the learned domain-agnostic features to the target domain through domain adaptation training. We conduct experiments on Chinese dialogue datasets from five different domains and show that AMD$^2$G achieves superior performance compared to both direct training on the target domain corpus and collective training on all five domain corpora. Our work underscores AMD$^2$G as a viable alternative solution for low-resource multi-domain dialogue generation. Code and data associated with our work are available on GitHub repository$^{\text 1}$.
Related papers
- Text-Free Multi-domain Graph Pre-training: Toward Graph Foundation Models [33.2696184519275]
We propose MDGPT, a text free Multi-Domain Graph Pre-Training and adaptation framework.
First, we propose a set of domain tokens to align features across source domains for synergistic pre-training.
Second, we propose a dual prompts, consisting of a unifying prompt and a mixing prompt, to further adapt the target domain with unified multi-domain knowledge.
arXiv Detail & Related papers (2024-05-22T19:06:39Z) - Boosting Large Language Models with Continual Learning for Aspect-based Sentiment Analysis [33.86086075084374]
Aspect-based sentiment analysis (ABSA) is an important subtask of sentiment analysis.
We propose a Large Language Model-based Continual Learning (textttLLM-CL) model for ABSA.
arXiv Detail & Related papers (2024-05-09T02:00:07Z) - Improving Domain Generalization with Domain Relations [77.63345406973097]
This paper focuses on domain shifts, which occur when the model is applied to new domains that are different from the ones it was trained on.
We propose a new approach called D$3$G to learn domain-specific models.
Our results show that D$3$G consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-02-06T08:11:16Z) - Using Language to Extend to Unseen Domains [81.37175826824625]
It is expensive to collect training data for every possible domain that a vision model may encounter when deployed.
We consider how simply verbalizing the training domain as well as domains we want to extend to but do not have data for can improve robustness.
Using a multimodal model with a joint image and language embedding space, our method LADS learns a transformation of the image embeddings from the training domain to each unseen test domain.
arXiv Detail & Related papers (2022-10-18T01:14:02Z) - DS-TOD: Efficient Domain Specialization for Task Oriented Dialog [12.395323315744625]
Self-supervised dialog-specific pretraining on large conversational datasets yields substantial gains over traditional language modeling (LM) pretraining in downstream task-oriented dialog (TOD)
We investigate the effects of domain specialization of pretrained language models (PLMs) for task-oriented dialog.
We propose a resource-efficient and modular domain specialization by means of domain adapters.
arXiv Detail & Related papers (2021-10-15T22:25:51Z) - Structured Latent Embeddings for Recognizing Unseen Classes in Unseen
Domains [108.11746235308046]
We propose a novel approach that learns domain-agnostic structured latent embeddings by projecting images from different domains.
Our experiments on the challenging DomainNet and DomainNet-LS benchmarks show the superiority of our approach over existing methods.
arXiv Detail & Related papers (2021-07-12T17:57:46Z) - Curriculum CycleGAN for Textual Sentiment Domain Adaptation with
Multiple Sources [68.31273535702256]
We propose a novel instance-level MDA framework, named curriculum cycle-consistent generative adversarial network (C-CycleGAN)
C-CycleGAN consists of three components: (1) pre-trained text encoder which encodes textual input from different domains into a continuous representation space, (2) intermediate domain generator with curriculum instance-level adaptation which bridges the gap across source and target domains, and (3) task classifier trained on the intermediate domain for final sentiment classification.
We conduct extensive experiments on three benchmark datasets and achieve substantial gains over state-of-the-art DA approaches.
arXiv Detail & Related papers (2020-11-17T14:50:55Z) - Dynamic Fusion Network for Multi-Domain End-to-end Task-Oriented Dialog [70.79442700890843]
We propose a novel Dynamic Fusion Network (DF-Net) which automatically exploit the relevance between the target domain and each domain.
With little training data, we show its transferability by outperforming prior best model by 13.9% on average.
arXiv Detail & Related papers (2020-04-23T08:17:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.