Curriculum CycleGAN for Textual Sentiment Domain Adaptation with
Multiple Sources
- URL: http://arxiv.org/abs/2011.08678v2
- Date: Thu, 18 Feb 2021 01:22:50 GMT
- Title: Curriculum CycleGAN for Textual Sentiment Domain Adaptation with
Multiple Sources
- Authors: Sicheng Zhao, Yang Xiao, Jiang Guo, Xiangyu Yue, Jufeng Yang, Ravi
Krishna, Pengfei Xu, Kurt Keutzer
- Abstract summary: We propose a novel instance-level MDA framework, named curriculum cycle-consistent generative adversarial network (C-CycleGAN)
C-CycleGAN consists of three components: (1) pre-trained text encoder which encodes textual input from different domains into a continuous representation space, (2) intermediate domain generator with curriculum instance-level adaptation which bridges the gap across source and target domains, and (3) task classifier trained on the intermediate domain for final sentiment classification.
We conduct extensive experiments on three benchmark datasets and achieve substantial gains over state-of-the-art DA approaches.
- Score: 68.31273535702256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentiment analysis of user-generated reviews or comments on products and
services in social networks can help enterprises to analyze the feedback from
customers and take corresponding actions for improvement. To mitigate
large-scale annotations on the target domain, domain adaptation (DA) provides
an alternate solution by learning a transferable model from other labeled
source domains. Existing multi-source domain adaptation (MDA) methods either
fail to extract some discriminative features in the target domain that are
related to sentiment, neglect the correlations of different sources and the
distribution difference among different sub-domains even in the same source, or
cannot reflect the varying optimal weighting during different training stages.
In this paper, we propose a novel instance-level MDA framework, named
curriculum cycle-consistent generative adversarial network (C-CycleGAN), to
address the above issues. Specifically, C-CycleGAN consists of three
components: (1) pre-trained text encoder which encodes textual input from
different domains into a continuous representation space, (2) intermediate
domain generator with curriculum instance-level adaptation which bridges the
gap across source and target domains, and (3) task classifier trained on the
intermediate domain for final sentiment classification. C-CycleGAN transfers
source samples at instance-level to an intermediate domain that is closer to
the target domain with sentiment semantics preserved and without losing
discriminative features. Further, our dynamic instance-level weighting
mechanisms can assign the optimal weights to different source samples in each
training stage. We conduct extensive experiments on three benchmark datasets
and achieve substantial gains over state-of-the-art DA approaches. Our source
code is released at: https://github.com/WArushrush/Curriculum-CycleGAN.
Related papers
- SIDE: Self-supervised Intermediate Domain Exploration for Source-free
Domain Adaptation [36.470026809824674]
Domain adaptation aims to alleviate the domain shift when transferring the knowledge learned from the source domain to the target domain.
Due to privacy issues, source-free domain adaptation (SFDA) has recently become very demanding yet challenging.
This paper proposes self-supervised intermediate domain exploration (SIDE) that effectively bridges the domain gap with an intermediate domain.
arXiv Detail & Related papers (2023-10-13T07:50:37Z) - Compositional Semantic Mix for Domain Adaptation in Point Cloud
Segmentation [65.78246406460305]
compositional semantic mixing represents the first unsupervised domain adaptation technique for point cloud segmentation.
We present a two-branch symmetric network architecture capable of concurrently processing point clouds from a source domain (e.g. synthetic) and point clouds from a target domain (e.g. real-world)
arXiv Detail & Related papers (2023-08-28T14:43:36Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Multi-Source Domain Adaptation with Collaborative Learning for Semantic
Segmentation [32.95273803359897]
Multi-source unsupervised domain adaptation(MSDA) aims at adapting models trained on multiple labeled source domains to an unlabeled target domain.
We propose a novel multi-source domain adaptation framework based on collaborative learning for semantic segmentation.
arXiv Detail & Related papers (2021-03-08T12:51:42Z) - Mutual Learning Network for Multi-Source Domain Adaptation [73.25974539191553]
We propose a novel multi-source domain adaptation method, Mutual Learning Network for Multiple Source Domain Adaptation (ML-MSDA)
Under the framework of mutual learning, the proposed method pairs the target domain with each single source domain to train a conditional adversarial domain adaptation network as a branch network.
The proposed method outperforms the comparison methods and achieves the state-of-the-art performance.
arXiv Detail & Related papers (2020-03-29T04:31:43Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
Domain adaptation aims to learn a transferable model to bridge the domain shift between one labeled source domain and another sparsely labeled or unlabeled target domain.
Recent multi-source domain adaptation (MDA) methods do not consider the pixel-level alignment between sources and target.
We propose a novel MDA framework to address these challenges.
arXiv Detail & Related papers (2020-02-19T21:22:00Z) - Multi-source Domain Adaptation for Visual Sentiment Classification [92.53780541232773]
We propose a novel multi-source domain adaptation (MDA) method, termed Multi-source Sentiment Generative Adversarial Network (MSGAN)
To handle data from multiple source domains, MSGAN learns to find a unified sentiment latent space where data from both the source and target domains share a similar distribution.
Extensive experiments conducted on four benchmark datasets demonstrate that MSGAN significantly outperforms the state-of-the-art MDA approaches for visual sentiment classification.
arXiv Detail & Related papers (2020-01-12T08:37:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.