論文の概要: OpenECAD: An Efficient Visual Language Model for Computer-Aided Design
- arxiv url: http://arxiv.org/abs/2406.09913v2
- Date: Sun, 23 Jun 2024 02:22:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 00:13:51.664610
- Title: OpenECAD: An Efficient Visual Language Model for Computer-Aided Design
- Title(参考訳): OpenECAD: コンピュータ支援設計のための効率的なビジュアル言語モデル
- Authors: Zhe Yuan, Jianqi Shi, Yanhong Huang,
- Abstract要約: 我々は、ビジュアル言語モデルの視覚的、論理的、コーディング、および一般的な機能を活用したOpenECADを作成するために、事前訓練されたモデルを微調整した。
OpenECADは入力として3Dデザインの画像を処理し、高度に構造化された2Dスケッチと3D構築コマンドを生成する。
- 参考スコア(独自算出の注目度): 1.481550828146527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer-aided design (CAD) tools are utilized in the manufacturing industry for modeling everything from cups to spacecraft. These programs are complex to use and typically require years of training and experience to master. Structured and well-constrained 2D sketches and 3D constructions are crucial components of CAD modeling. A well-executed CAD model can be seamlessly integrated into the manufacturing process, thereby enhancing production efficiency. Deep generative models of 3D shapes and 3D object reconstruction models have garnered significant research interest. However, most of these models are represented in discrete forms. Moreover, the few models based on CAD operations often have substantial input restrictions. In this work, we fine-tuned pre-trained models to create OpenECAD (0.55B, 0.89B, 2.4B, 3.2B and 4.2B), leveraging the visual, logical, coding, and general capabilities of visual language models. OpenECAD can process images of 3D designs as input and generate highly structured 2D sketches and 3D construction commands. These outputs can be directly used with existing CAD tools' APIs to generate project files. To train our network, we created a new CAD dataset. This dataset is based on existing public CAD datasets, with adjustments and augmentations to meet the requirements of VLM training.
- Abstract(参考訳): コンピュータ支援デザイン(CAD)ツールは、カップから宇宙船まであらゆるものをモデリングするために製造業界で利用されている。
これらのプログラムは使用が複雑で、通常、習得するには何年ものトレーニングと経験が必要です。
CADモデリングの重要な要素は、構造的かつ制約の厳しい2Dスケッチと3D構成である。
優れたCADモデルを製造工程にシームレスに統合することにより、生産効率を向上させることができる。
3次元形状の深部生成モデルと3次元オブジェクト再構成モデルは、重要な研究の関心を集めている。
しかし、これらのモデルのほとんどは離散形式で表現されている。
さらに、CAD操作に基づく数少ないモデルには、かなりの入力制限があることが多い。
本研究では,OpenECAD(0.55B,0.89B,2.4B,3.2B,4.2B)を作成するための事前学習モデルの微調整を行った。
OpenECADは入力として3Dデザインの画像を処理し、高度に構造化された2Dスケッチと3D構築コマンドを生成する。
これらの出力は、プロジェクトファイルを生成するために既存のCADツールのAPIで直接使用することができる。
ネットワークをトレーニングするために、新しいCADデータセットを作成しました。
このデータセットは既存の公開CADデータセットに基づいており、VLMトレーニングの要件を満たすように調整と拡張を行っている。
関連論文リスト
- Text2CAD: Text to 3D CAD Generation via Technical Drawings [45.3611544056261]
Text2CADは、生成プロセスを自動化するために調整された安定した拡散モデルを利用する新しいフレームワークである。
テキスト2CADは,高品質な3次元CADモデルに正確に変換された技術図面を効果的に生成することを示す。
論文 参考訳(メタデータ) (2024-11-09T15:12:06Z) - Img2CAD: Conditioned 3D CAD Model Generation from Single Image with Structured Visual Geometry [12.265852643914439]
編集可能なパラメータを生成するために2次元画像入力を用いた最初の知識であるImg2CADを提案する。
Img2CADはAI 3D再構成とCAD表現のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2024-10-04T13:27:52Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
本調査では,コンピュータ支援設計における学習手法の概要について概観する。
類似性解析と検索、2Dおよび3DCADモデル合成、点雲からのCAD生成を含む。
ベンチマークデータセットとその特性の完全なリストと、この領域の研究を推進しているオープンソースコードを提供する。
論文 参考訳(メタデータ) (2024-02-27T17:11:35Z) - Model2Scene: Learning 3D Scene Representation via Contrastive
Language-CAD Models Pre-training [105.3421541518582]
現在成功している3次元シーン認識法は、大規模アノテートされた点雲に依存している。
CAD(Computer-Aided Design)モデルと言語から自由な3Dシーン表現を学習する新しいパラダイムであるModel2Sceneを提案する。
Model2Sceneは、平均mAPが46.08%、ScanNetとS3DISのデータセットが55.49%という、ラベルなしの優れた3Dオブジェクトのサリエント検出をもたらす。
論文 参考訳(メタデータ) (2023-09-29T03:51:26Z) - SECAD-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude
Operations [21.000539206470897]
SECAD-Netは、コンパクトで使いやすいCADモデルの再構築を目的とした、エンドツーエンドのニューラルネットワークである。
本研究は,CAD再構築の手法など,最先端の代替手段よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-19T09:26:03Z) - GET3D: A Generative Model of High Quality 3D Textured Shapes Learned
from Images [72.15855070133425]
本稿では,複雑なトポロジ,リッチな幾何学的ディテール,高忠実度テクスチャを備えたExplicit Textured 3Dメッシュを直接生成する生成モデルであるGET3Dを紹介する。
GET3Dは、車、椅子、動物、バイク、人間キャラクターから建物まで、高品質な3Dテクスチャメッシュを生成することができる。
論文 参考訳(メタデータ) (2022-09-22T17:16:19Z) - 'CADSketchNet' -- An Annotated Sketch dataset for 3D CAD Model Retrieval
with Deep Neural Networks [0.8155575318208631]
本稿では,ディープラーニングに基づく3次元CADモデルの検索システム構築に適したデータセットの開発を目的とする。
また,スケッチ画像を入力クエリとして受信する3次元CADモデルの検索システムや検索エンジンの性能を評価することを目的とする。
論文 参考訳(メタデータ) (2021-07-13T16:10:16Z) - DeepCAD: A Deep Generative Network for Computer-Aided Design Models [37.655225142981564]
形状をコンピュータ支援設計(CAD)操作のシーケンスとして記述した形状表現の3次元生成モデルについて述べる。
CAD操作と自然言語の類似性について,トランスフォーマーに基づくCAD生成ネットワークを提案する。
論文 参考訳(メタデータ) (2021-05-20T03:29:18Z) - Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis
and Analysis [143.22192229456306]
本稿では,体積形状を表す3次元エネルギーモデルを提案する。
提案モデルの利点は6倍である。
実験により,提案モデルが高品質な3d形状パターンを生成できることが実証された。
論文 参考訳(メタデータ) (2020-12-25T06:09:36Z) - Mask2CAD: 3D Shape Prediction by Learning to Segment and Retrieve [54.054575408582565]
本稿では,既存の3次元モデルの大規模データセットを活用し,画像中の物体の3次元構造を理解することを提案する。
本稿では,実世界の画像と検出対象を共同で検出するMask2CADについて,最も類似したCADモデルとそのポーズを最適化する。
これにより、画像内のオブジェクトのクリーンで軽量な表現が生成される。
論文 参考訳(メタデータ) (2020-07-26T00:08:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。