Robust compressive tracking via online weighted multiple instance learning
- URL: http://arxiv.org/abs/2406.09914v1
- Date: Fri, 14 Jun 2024 10:48:17 GMT
- Title: Robust compressive tracking via online weighted multiple instance learning
- Authors: Sandeep Singh Sengar,
- Abstract summary: We propose a visual object tracking algorithm by integrating a coarse-to-fine search strategy based on sparse representation and the weighted multiple instance learning (WMIL) algorithm.
Compared with the other trackers, our approach has more information of the original signal with less complexity due to the coarse-to-fine search method, and also has weights for important samples.
- Score: 0.6813925418351435
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Developing a robust object tracker is a challenging task due to factors such as occlusion, motion blur, fast motion, illumination variations, rotation, background clutter, low resolution and deformation across the frames. In the literature, lots of good approaches based on sparse representation have already been presented to tackle the above problems. However, most of the algorithms do not focus on the learning of sparse representation. They only consider the modeling of target appearance and therefore drift away from the target with the imprecise training samples. By considering all the above factors in mind, we have proposed a visual object tracking algorithm by integrating a coarse-to-fine search strategy based on sparse representation and the weighted multiple instance learning (WMIL) algorithm. Compared with the other trackers, our approach has more information of the original signal with less complexity due to the coarse-to-fine search method, and also has weights for important samples. Thus, it can easily discriminate the background features from the foreground. Furthermore, we have also selected the samples from the un-occluded sub-regions to efficiently develop the strong classifier. As a consequence, a stable and robust object tracker is achieved to tackle all the aforementioned problems. Experimental results with quantitative as well as qualitative analysis on challenging benchmark datasets show the accuracy and efficiency of our method.
Related papers
- Enhancing Digital Hologram Reconstruction Using Reverse-Attention Loss for Untrained Physics-Driven Deep Learning Models with Uncertain Distance [10.788482076164314]
We present a pioneering approach to addressing the Autofocusing challenge in untrained deep-learning methods.
Our method presents a significant reconstruction performance over rival methods.
For example, the difference is less than 1dB in PSNR and 0.002 in SSIM for the target sample.
arXiv Detail & Related papers (2024-01-11T01:30:46Z) - Few-shot Image Classification based on Gradual Machine Learning [6.935034849731568]
Few-shot image classification aims to accurately classify unlabeled images using only a few labeled samples.
We propose a novel approach based on the non-i.i.d paradigm of gradual machine learning (GML)
We show that the proposed approach can improve the SOTA performance by 1-5% in terms of accuracy.
arXiv Detail & Related papers (2023-07-28T12:30:41Z) - BIMS-PU: Bi-Directional and Multi-Scale Point Cloud Upsampling [60.257912103351394]
We develop a new point cloud upsampling pipeline called BIMS-PU.
We decompose the up/downsampling procedure into several up/downsampling sub-steps by breaking the target sampling factor into smaller factors.
We show that our method achieves superior results to state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-25T13:13:37Z) - A Bayesian Detect to Track System for Robust Visual Object Tracking and
Semi-Supervised Model Learning [1.7268829007643391]
We ad-dress problems in a Bayesian tracking and detection framework parameterized by neural network outputs.
We propose a particle filter-based approximate sampling algorithm for tracking object state estimation.
Based on our particle filter inference algorithm, a semi-supervised learn-ing algorithm is utilized for learning tracking network on intermittent labeled frames.
arXiv Detail & Related papers (2022-05-05T00:18:57Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
We propose a novel approach that achieves self-supervised and magnification-flexible point clouds upsampling simultaneously.
Experimental results demonstrate that our self-supervised learning based scheme achieves competitive or even better performance than supervised learning based state-of-the-art methods.
arXiv Detail & Related papers (2022-04-18T07:18:25Z) - Learning Representations for Pixel-based Control: What Matters and Why? [22.177382138487566]
We present a simple baseline approach that can learn meaningful representations with no metric-based learning, no data augmentations, no world-model learning, and no contrastive learning.
Our results show that finer categorization of benchmarks on the basis of characteristics like density of reward, planning horizon of the problem, presence of task-irrelevant components, etc., is crucial in evaluating algorithms.
arXiv Detail & Related papers (2021-11-15T14:16:28Z) - Pretrained equivariant features improve unsupervised landmark discovery [69.02115180674885]
We formulate a two-step unsupervised approach that overcomes this challenge by first learning powerful pixel-based features.
Our method produces state-of-the-art results in several challenging landmark detection datasets.
arXiv Detail & Related papers (2021-04-07T05:42:11Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Factor Graph based 3D Multi-Object Tracking in Point Clouds [8.411514688735183]
We propose a novel optimization-based approach that does not rely on explicit and fixed assignments.
We demonstrate its performance on the real world KITTI tracking dataset and achieve better results than many state-of-the-art algorithms.
arXiv Detail & Related papers (2020-08-12T13:34:46Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Learning a Unified Sample Weighting Network for Object Detection [113.98404690619982]
Region sampling or weighting is significantly important to the success of modern region-based object detectors.
We argue that sample weighting should be data-dependent and task-dependent.
We propose a unified sample weighting network to predict a sample's task weights.
arXiv Detail & Related papers (2020-06-11T16:19:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.