Implementing engrams from a machine learning perspective: XOR as a basic motif
- URL: http://arxiv.org/abs/2406.09940v1
- Date: Fri, 14 Jun 2024 11:36:49 GMT
- Title: Implementing engrams from a machine learning perspective: XOR as a basic motif
- Authors: Jesus Marco de Lucas, Maria Peña Fernandez, Lara Lloret Iglesias,
- Abstract summary: We present our initial ideas based on a basic motif that implements an XOR switch.
We explore how to build a basic biological neuronal structure with learning capacity integrating this XOR motif.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We have previously presented the idea of how complex multimodal information could be represented in our brains in a compressed form, following mechanisms similar to those employed in machine learning tools, like autoencoders. In this short comment note we reflect, mainly with a didactical purpose, upon the basic question for a biological implementation: what could be the mechanism working as a loss function, and how it could be connected to a neuronal network providing the required feedback to build a simple training configuration. We present our initial ideas based on a basic motif that implements an XOR switch, using few excitatory and inhibitory neurons. Such motif is guided by a principle of homeostasis, and it implements a loss function that could provide feedback to other neuronal structures, establishing a control system. We analyse the presence of this XOR motif in the connectome of C.Elegans, and indicate the relationship with the well-known lateral inhibition motif. We then explore how to build a basic biological neuronal structure with learning capacity integrating this XOR motif. Guided by the computational analogy, we show an initial example that indicates the feasibility of this approach, applied to learning binary sequences, like it is the case for simple melodies. In summary, we provide didactical examples exploring the parallelism between biological and computational learning mechanisms, identifying basic motifs and training procedures, and how an engram encoding a melody could be built using a simple recurrent network involving both excitatory and inhibitory neurons.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Neuromechanical Autoencoders: Learning to Couple Elastic and Neural
Network Nonlinearity [15.47367187516723]
We seek to develop machine learning analogs of.
mechanical intelligence.
We jointly learn the morphology of complex nonlinear elastic solids along with a.
deep neural network to control it.
arXiv Detail & Related papers (2023-01-31T19:04:28Z) - The Predictive Forward-Forward Algorithm [79.07468367923619]
We propose the predictive forward-forward (PFF) algorithm for conducting credit assignment in neural systems.
We design a novel, dynamic recurrent neural system that learns a directed generative circuit jointly and simultaneously with a representation circuit.
PFF efficiently learns to propagate learning signals and updates synapses with forward passes only.
arXiv Detail & Related papers (2023-01-04T05:34:48Z) - Spike-based local synaptic plasticity: A survey of computational models
and neuromorphic circuits [1.8464222520424338]
We review historical, bottom-up, and top-down approaches to modeling synaptic plasticity.
We identify computational primitives that can support low-latency and low-power hardware implementations of spike-based learning rules.
arXiv Detail & Related papers (2022-09-30T15:35:04Z) - Neuromorphic Control [1.52292571922932]
The article introduces the mixed feedback organization of excitable neuronal systems, consisting of interlocked positive and negative feedback loops acting in distinct timescales.
The proposed design consists of a parallel interconnection of elementary circuit elements that mirrors the organization of biological neurons.
The potential of neuronal control is illustrated on elementary network examples that suggest the scalability of the mixed-feedback principles.
arXiv Detail & Related papers (2020-11-09T14:06:06Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
We propose that the immature prefrontal cortex (PFC) use its primary functionality of detecting hierarchical patterns in temporal signals.
Our hypothesis is that the PFC detects the hierarchical structure in temporal sequences in the form of ordinal patterns and use them to index information hierarchically in different parts of the brain.
By doing so, it gives the tools to the language-ready brain for manipulating abstract knowledge and planning temporally ordered information.
arXiv Detail & Related papers (2020-05-22T14:29:51Z) - Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning [0.0]
We propose a brain-inspired neural system based on the reentry theory using Self-Organizing Maps and Hebbian-like learning.
We show the gain of the so-called hardware plasticity induced by the ReSOM, where the system's topology is not fixed by the user but learned along the system's experience through self-organization.
arXiv Detail & Related papers (2020-04-11T21:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.