Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning
- URL: http://arxiv.org/abs/2004.05488v3
- Date: Wed, 2 Sep 2020 17:10:21 GMT
- Title: Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning
- Authors: Lyes Khacef, Laurent Rodriguez, Benoit Miramond
- Abstract summary: We propose a brain-inspired neural system based on the reentry theory using Self-Organizing Maps and Hebbian-like learning.
We show the gain of the so-called hardware plasticity induced by the ReSOM, where the system's topology is not fixed by the user but learned along the system's experience through self-organization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cortical plasticity is one of the main features that enable our ability to
learn and adapt in our environment. Indeed, the cerebral cortex self-organizes
itself through structural and synaptic plasticity mechanisms that are very
likely at the basis of an extremely interesting characteristic of the human
brain development: the multimodal association. In spite of the diversity of the
sensory modalities, like sight, sound and touch, the brain arrives at the same
concepts (convergence). Moreover, biological observations show that one
modality can activate the internal representation of another modality when both
are correlated (divergence). In this work, we propose the Reentrant
Self-Organizing Map (ReSOM), a brain-inspired neural system based on the
reentry theory using Self-Organizing Maps and Hebbian-like learning. We propose
and compare different computational methods for unsupervised learning and
inference, then quantify the gain of the ReSOM in a multimodal classification
task. The divergence mechanism is used to label one modality based on the
other, while the convergence mechanism is used to improve the overall accuracy
of the system. We perform our experiments on a constructed written/spoken
digits database and a DVS/EMG hand gestures database. The proposed model is
implemented on a cellular neuromorphic architecture that enables distributed
computing with local connectivity. We show the gain of the so-called hardware
plasticity induced by the ReSOM, where the system's topology is not fixed by
the user but learned along the system's experience through self-organization.
Related papers
Err
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.