論文の概要: InstructRL4Pix: Training Diffusion for Image Editing by Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2406.09973v1
- Date: Fri, 14 Jun 2024 12:31:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 13:45:23.992315
- Title: InstructRL4Pix: Training Diffusion for Image Editing by Reinforcement Learning
- Title(参考訳): InstructRL4Pix:強化学習による画像編集のためのトレーニング拡散
- Authors: Tiancheng Li, Jinxiu Liu, Huajun Chen, Qi Liu,
- Abstract要約: 本稿では,対象物体の注意図で導かれる画像を生成するために拡散モデルを訓練するための強化学習ガイド画像編集法(InstructRL4Pix)を提案する。
実験結果から、InstructRL4Pixは従来のデータセットの限界を突破し、教師なし学習を用いて、編集目標を最適化し、自然な人間のコマンドに基づいて正確な画像編集を実現することがわかった。
- 参考スコア(独自算出の注目度): 31.799923647356458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction-based image editing has made a great process in using natural human language to manipulate the visual content of images. However, existing models are limited by the quality of the dataset and cannot accurately localize editing regions in images with complex object relationships. In this paper, we propose Reinforcement Learning Guided Image Editing Method(InstructRL4Pix) to train a diffusion model to generate images that are guided by the attention maps of the target object. Our method maximizes the output of the reward model by calculating the distance between attention maps as a reward function and fine-tuning the diffusion model using proximal policy optimization (PPO). We evaluate our model in object insertion, removal, replacement, and transformation. Experimental results show that InstructRL4Pix breaks through the limitations of traditional datasets and uses unsupervised learning to optimize editing goals and achieve accurate image editing based on natural human commands.
- Abstract(参考訳): インストラクションに基づく画像編集は、自然言語を使って画像の視覚的内容を操作するのに優れたプロセスとなった。
しかし、既存のモデルはデータセットの品質によって制限されており、複雑なオブジェクト関係を持つ画像の編集領域を正確にローカライズすることはできない。
本稿では,対象物体の注意図で示される画像を生成するために拡散モデルを訓練するための強化学習ガイド画像編集法(InstructRL4Pix)を提案する。
提案手法は,報酬関数として注目マップ間の距離を計算し,近似ポリシ最適化(PPO)を用いて拡散モデルを微調整することにより,報酬モデルの出力を最大化する。
オブジェクト挿入、削除、置換、変換において、我々のモデルを評価する。
実験結果から、InstructRL4Pixは従来のデータセットの限界を突破し、教師なし学習を用いて、編集目標を最適化し、自然な人間のコマンドに基づいて正確な画像編集を実現することがわかった。
関連論文リスト
- PrefPaint: Aligning Image Inpainting Diffusion Model with Human Preference [62.72779589895124]
画像インペイントのための拡散モデルと人間の審美基準との整合性を、強化学習フレームワークを用いて初めて試みる。
我々は、人間の好みを付加した約51,000枚の画像からなるデータセットで報酬モデルを訓練する。
画像拡張や3次元再構成などの下流タスクの塗装比較実験により, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-10-29T11:49:39Z) - Image Inpainting Models are Effective Tools for Instruction-guided Image Editing [42.63350374074953]
CVPR2024 GenAI Media Generation Challenge Workshop's Instruction-guided Image Editing Trackの優勝作品である。
4段階のプロセスIIIE (Inpainting-based Instruction-Guided Image Editing): カテゴリ分類、主編集対象識別、編集マスク取得、画像インパインティング。
その結果,言語モデルと画像インパインティングモデルの適切な組み合わせによって,パイプラインは視覚的品質を満足して高い成功率を達成することができた。
論文 参考訳(メタデータ) (2024-07-18T03:55:33Z) - DiffUHaul: A Training-Free Method for Object Dragging in Images [78.93531472479202]
DiffUHaulと呼ばれるオブジェクトドラッグタスクのためのトレーニング不要な手法を提案する。
まず、各認知段階に注意マスキングを適用して、各生成を異なるオブジェクトにまたがってよりゆがみやすくする。
初期のデノナイジングステップでは、ソース画像とターゲット画像の注意特徴を補間して、新しいレイアウトを元の外観とスムーズに融合させる。
論文 参考訳(メタデータ) (2024-06-03T17:59:53Z) - Diffusion Model-Based Image Editing: A Survey [46.244266782108234]
様々な画像生成や編集作業のための強力なツールとして,拡散モデルが登場している。
本稿では,画像編集のための拡散モデルを用いた既存手法の概要について述べる。
テキスト誘導画像編集アルゴリズムの性能を更に評価するために,系統的なベンチマークであるEditEvalを提案する。
論文 参考訳(メタデータ) (2024-02-27T14:07:09Z) - VASE: Object-Centric Appearance and Shape Manipulation of Real Videos [108.60416277357712]
本研究では,オブジェクトの外観と,特にオブジェクトの精密かつ明示的な構造的変更を実行するために設計された,オブジェクト中心のフレームワークを紹介する。
我々は,事前学習した画像条件拡散モデル上にフレームワークを構築し,時間次元を扱うためのレイヤを統合するとともに,形状制御を実現するためのトレーニング戦略とアーキテクチャ修正を提案する。
我々は,画像駆動映像編集タスクにおいて,最先端技術に類似した性能を示し,新しい形状編集機能を示す手法について検討した。
論文 参考訳(メタデータ) (2024-01-04T18:59:24Z) - iEdit: Localised Text-guided Image Editing with Weak Supervision [53.082196061014734]
テキスト誘導画像編集のための新しい学習法を提案する。
ソースイメージに条件付けされた画像とテキスト編集プロンプトを生成する。
画像の忠実度、CLIPアライメントスコア、および生成された画像と実際の画像の両方を定性的に編集する点において、画像に対して好ましい結果を示す。
論文 参考訳(メタデータ) (2023-05-10T07:39:14Z) - Fine-grained Image Editing by Pixel-wise Guidance Using Diffusion Models [4.855820180160146]
本稿では,画像の拡散に基づく新しい画像編集フレームワークを提案する。
提案手法は,品質と速度を編集するGAN法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-05T04:39:08Z) - InstructPix2Pix: Learning to Follow Image Editing Instructions [103.77092910685764]
人間の指示から画像を編集する手法を提案する。
入力画像とモデルに何をすべきかを指示する命令が与えられたら、我々のモデルはこれらの命令に従って画像を編集します。
入力画像と書き起こしの多様なコレクションに対して、魅力的な編集結果を示す。
論文 参考訳(メタデータ) (2022-11-17T18:58:43Z) - Look here! A parametric learning based approach to redirect visual
attention [49.609412873346386]
画像領域を微妙な画像編集によってより注目度の高いものにするための自動手法を提案する。
我々のモデルは、前景および背景画像領域に適用可能な、異なるグローバルパラメトリック変換セットを予測する。
編集により、任意の画像サイズでインタラクティブなレートでの推論が可能になり、簡単に動画に一般化できる。
論文 参考訳(メタデータ) (2020-08-12T16:08:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。