論文の概要: Disentangling Dialect from Social Bias via Multitask Learning to Improve Fairness
- arxiv url: http://arxiv.org/abs/2406.09977v1
- Date: Fri, 14 Jun 2024 12:39:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 13:45:23.986883
- Title: Disentangling Dialect from Social Bias via Multitask Learning to Improve Fairness
- Title(参考訳): フェアネス向上のためのマルチタスク学習によるソーシャルバイアスからの方言の遠ざかる
- Authors: Maximilian Spliethöver, Sai Nikhil Menon, Henning Wachsmuth,
- Abstract要約: 本稿では,構文的および語彙的バリエーションを組み込む補助課題として,方言をモデル化するマルチタスク学習手法を提案する。
アフリカ系アメリカ人の英語方言を用いた実験では、共通学習アプローチと方言モデリングを補完することで、その公正さが向上することを示す実証的証拠を提供する。
その結果、マルチタスク学習は最先端の性能を達成し、偏りのある言語の性質をより確実に検出するのに役立つことが示唆された。
- 参考スコア(独自算出の注目度): 16.746758715820324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dialects introduce syntactic and lexical variations in language that occur in regional or social groups. Most NLP methods are not sensitive to such variations. This may lead to unfair behavior of the methods, conveying negative bias towards dialect speakers. While previous work has studied dialect-related fairness for aspects like hate speech, other aspects of biased language, such as lewdness, remain fully unexplored. To fill this gap, we investigate performance disparities between dialects in the detection of five aspects of biased language and how to mitigate them. To alleviate bias, we present a multitask learning approach that models dialect language as an auxiliary task to incorporate syntactic and lexical variations. In our experiments with African-American English dialect, we provide empirical evidence that complementing common learning approaches with dialect modeling improves their fairness. Furthermore, the results suggest that multitask learning achieves state-of-the-art performance and helps to detect properties of biased language more reliably.
- Abstract(参考訳): 方言は、地域や社会集団で起こる言語における統語的・語彙的なバリエーションを導入している。
ほとんどのNLP法はそのような変動に敏感ではない。
これは手法の不公平な振る舞いを招き、方言話者に否定的な偏見をもたらす可能性がある。
過去の研究はヘイトスピーチのような側面の方言関連フェアネスを研究してきたが、レウドネスのような偏見のある言語の他の側面は完全に解明されていないままである。
このギャップを埋めるために、偏りのある言語の5つの側面の検出とそれらの緩和方法における方言間の性能格差について検討する。
バイアスを軽減するために,構文と語彙のバリエーションを組み込む補助課題として,方言をモデル化するマルチタスク学習手法を提案する。
アフリカ系アメリカ人の英語方言を用いた実験では、共通学習アプローチと方言モデリングを補完することで、その公正さが向上することを示す実証的証拠を提供する。
さらに,マルチタスク学習が最先端性能を実現し,バイアス言語の性質をより確実に検出する上で有効であることが示唆された。
関連論文リスト
- Dialetto, ma Quanto Dialetto? Transcribing and Evaluating Dialects on a Continuum [25.732397636695882]
イタリア語方言における音声とテキストのパフォーマンスを測定し,地理的な特徴の相違を実証的に観察する。
この格差は(-0.5)言語的に最もパフォーマンスの高い方言とほぼ類似している。
さらに, 地学的手法を用いて, 見えない場所でのゼロショット性能を予測し, 地理的情報の導入により予測性能を大幅に向上する。
論文 参考訳(メタデータ) (2024-10-18T16:39:42Z) - Collapsed Language Models Promote Fairness [88.48232731113306]
偏りのある言語モデルはトークン表現と単語埋め込みの間に崩壊したアライメントを示す。
我々は,幅広い脱バイアス法において,公平性を効果的に向上する原理的な微調整法を設計する。
論文 参考訳(メタデータ) (2024-10-06T13:09:48Z) - Exploring Diachronic and Diatopic Changes in Dialect Continua: Tasks, Datasets and Challenges [2.572144535177391]
我々は3つの言語族(スラヴ語、ロマンス語、ゲルマン語)から5つの方言にまたがる9つのタスクとデータセットを批判的に評価する。
本稿では,方言使用の経時的変化,方言データセットの信頼性,話者特性の重要性,方言の限られた範囲,データ収集における倫理的配慮に関する5つのオープンな課題を概説する。
言語の種類や方言の包括的計算手法やデータセットに関する今後の研究に光を当てることを願っています。
論文 参考訳(メタデータ) (2024-07-04T15:38:38Z) - Babysit A Language Model From Scratch: Interactive Language Learning by Trials and Demonstrations [15.394018604836774]
本稿では, 学生の試行, 教師のデモンストレーション, 言語能力に配慮した報酬の3つの要素を組み込んだTnD学習フレームワークを提案する。
実験の結果,TnD手法は等数あるいは少人数の学生モデルの単語獲得を促進させることがわかった。
この結果から,対話型言語学習は,教師による実演や学生の試行を通じて,言語モデルにおける効率的な単語学習を促進することが示唆された。
論文 参考訳(メタデータ) (2024-05-22T16:57:02Z) - Modeling Orthographic Variation in Occitan's Dialects [3.038642416291856]
大規模多言語モデルは、前処理時のスペル正規化の必要性を最小限に抑える。
以上の結果から,複数言語モデルでは,前処理時のスペル正規化の必要性が最小限に抑えられていることが示唆された。
論文 参考訳(メタデータ) (2024-04-30T07:33:51Z) - Task-Agnostic Low-Rank Adapters for Unseen English Dialects [52.88554155235167]
LLM(Large Language Models)は、標準アメリカ英語を好んで不均等に重み付けされたコーパスで訓練される。
HyperLoRAは、方言特化情報と方言横断情報を混同することにより、タスクに依存しない方法で未確認の方言への一般化を改善する。
論文 参考訳(メタデータ) (2023-11-02T01:17:29Z) - Quantifying the Dialect Gap and its Correlates Across Languages [69.18461982439031]
この研究は、明らかな相違を明らかにし、マインドフルなデータ収集を通じてそれらに対処する可能性のある経路を特定することによって、方言NLPの分野を強化する基盤となる。
論文 参考訳(メタデータ) (2023-10-23T17:42:01Z) - Testing the Ability of Language Models to Interpret Figurative Language [69.59943454934799]
比喩的・比喩的な言語は言論において一般的である。
現代の言語モデルが非リテラルなフレーズをどの程度解釈できるかについては、未解決の疑問が残る。
ウィノグラードスタイルの非文字言語理解タスクであるFig-QAを紹介する。
論文 参考訳(メタデータ) (2022-04-26T23:42:22Z) - On Negative Interference in Multilingual Models: Findings and A
Meta-Learning Treatment [59.995385574274785]
従来の信念に反して、負の干渉は低リソース言語にも影響を及ぼすことを示す。
メタ学習アルゴリズムは、より優れた言語間変換性を得、負の干渉を軽減する。
論文 参考訳(メタデータ) (2020-10-06T20:48:58Z) - Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer [101.58431011820755]
多言語埋め込みにおけるジェンダーバイアスとNLPアプリケーションの伝達学習への影響について検討する。
我々は、バイアス分析のための多言語データセットを作成し、多言語表現におけるバイアスの定量化方法をいくつか提案する。
論文 参考訳(メタデータ) (2020-05-02T04:34:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。