Localizing Events in Videos with Multimodal Queries
- URL: http://arxiv.org/abs/2406.10079v2
- Date: Sat, 22 Jun 2024 06:53:40 GMT
- Title: Localizing Events in Videos with Multimodal Queries
- Authors: Gengyuan Zhang, Mang Ling Ada Fok, Yan Xia, Yansong Tang, Daniel Cremers, Philip Torr, Volker Tresp, Jindong Gu,
- Abstract summary: We introduce a new benchmark, ICQ, for localizing events in videos with multimodal queries.
We include 4 styles of reference images and 5 types of refinement texts, allowing us to explore model performance across different domains.
- Score: 71.40602125623668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video understanding is a pivotal task in the digital era, yet the dynamic and multievent nature of videos makes them labor-intensive and computationally demanding to process. Thus, localizing a specific event given a semantic query has gained importance in both user-oriented applications like video search and academic research into video foundation models. A significant limitation in current research is that semantic queries are typically in natural language that depicts the semantics of the target event. This setting overlooks the potential for multimodal semantic queries composed of images and texts. To address this gap, we introduce a new benchmark, ICQ, for localizing events in videos with multimodal queries, along with a new evaluation dataset ICQ-Highlight. Our new benchmark aims to evaluate how well models can localize an event given a multimodal semantic query that consists of a reference image, which depicts the event, and a refinement text to adjust the images' semantics. To systematically benchmark model performance, we include 4 styles of reference images and 5 types of refinement texts, allowing us to explore model performance across different domains. We propose 3 adaptation methods that tailor existing models to our new setting and evaluate 10 SOTA models, ranging from specialized to large-scale foundation models. We believe this benchmark is an initial step toward investigating multimodal queries in video event localization.
Related papers
- MAGNET: A Multi-agent Framework for Finding Audio-Visual Needles by Reasoning over Multi-Video Haystacks [67.31276358668424]
We introduce a novel task named AV-HaystacksQA, where the goal is to identify salient segments across different videos in response to a query and link them together to generate the most informative answer.<n> AVHaystacks is an audio-visual benchmark comprising 3100 annotated QA pairs designed to assess the capabilities of LMMs in multi-video retrieval and temporal grounding task.<n>We propose a model-agnostic, multi-agent framework to address this challenge, achieving up to 89% and 65% relative improvements over baseline methods on BLEU@4 and GPT evaluation scores in QA task on our proposed AVHaystack
arXiv Detail & Related papers (2025-06-08T06:34:29Z) - Towards Fine-Grained Video Question Answering [17.582244704442747]
This paper introduces the Multi-Object Multi-Actor Question Answering (MOMA-QA) dataset.
With ground truth scene graphs and temporal interval annotations, MOMA-QA is ideal for developing models for fine-grained video understanding.
We present a novel video-language model, SGVLM, which incorporates a scene graph predictor, an efficient frame retriever, and a pre-trained large language model for temporal localization and fine-grained relationship understanding.
arXiv Detail & Related papers (2025-03-10T01:02:01Z) - Perceive, Query & Reason: Enhancing Video QA with Question-Guided Temporal Queries [50.47265863322891]
Video Question Answering (Video QA) is a challenging video understanding task that requires models to comprehend entire videos.
Recent advancements in Multimodal Large Language Models (MLLMs) have transformed video QA by leveraging their exceptional commonsense reasoning capabilities.
We propose T-Former, a novel temporal modeling method that creates a question-guided temporal bridge between frame-wise visual perception and the reasoning capabilities of LLMs.
arXiv Detail & Related papers (2024-12-26T17:53:14Z) - Prompting Video-Language Foundation Models with Domain-specific Fine-grained Heuristics for Video Question Answering [71.62961521518731]
HeurVidQA is a framework that leverages domain-specific entity-actions to refine pre-trained video-language foundation models.
Our approach treats these models as implicit knowledge engines, employing domain-specific entity-action prompters to direct the model's focus toward precise cues that enhance reasoning.
arXiv Detail & Related papers (2024-10-12T06:22:23Z) - An Interactive Multi-modal Query Answering System with Retrieval-Augmented Large Language Models [21.892975397847316]
We present an interactive Multi-modal Query Answering (MQA) system, empowered by our newly developed multi-modal retrieval framework and navigation graph index.
One notable aspect of MQA is its utilization of contrastive learning to assess the significance of different modalities.
The system achieves efficient retrieval through our advanced navigation graph index, refined using computational pruning techniques.
arXiv Detail & Related papers (2024-07-05T02:01:49Z) - The Surprising Effectiveness of Multimodal Large Language Models for Video Moment Retrieval [36.516226519328015]
Video-language tasks necessitate spatial and temporal comprehension and require significant compute.
This work demonstrates the surprising effectiveness of leveraging image-text pretrained MLLMs for moment retrieval.
We achieve a new state-of-the-art in moment retrieval on the widely used benchmarks Charades-STA, QVHighlights, and ActivityNet Captions.
arXiv Detail & Related papers (2024-06-26T06:59:09Z) - Improving Video Corpus Moment Retrieval with Partial Relevance Enhancement [72.7576395034068]
Video Corpus Moment Retrieval (VCMR) is a new video retrieval task aimed at retrieving a relevant moment from a large corpus of untrimmed videos using a text query.
We argue that effectively capturing the partial relevance between the query and video is essential for the VCMR task.
For video retrieval, we introduce a multi-modal collaborative video retriever, generating different query representations for the two modalities.
For moment localization, we propose the focus-then-fuse moment localizer, utilizing modality-specific gates to capture essential content.
arXiv Detail & Related papers (2024-02-21T07:16:06Z) - Self-Chained Image-Language Model for Video Localization and Question
Answering [66.86740990630433]
We propose Self-Chained Video-Answering (SeViLA) framework to tackle both temporal localization and QA on videos.
SeViLA framework consists of two modules: Localizer and Answerer, where both are parameter-efficiently fine-tuned from BLIP-2.
arXiv Detail & Related papers (2023-05-11T17:23:00Z) - CONQUER: Contextual Query-aware Ranking for Video Corpus Moment
Retrieval [24.649068267308913]
Video retrieval applications should enable users to retrieve a precise moment from a large video corpus.
We propose a novel model for effective moment localization and ranking.
We conduct studies on two datasets, TVR for closed-world TV episodes and DiDeMo for open-world user-generated videos.
arXiv Detail & Related papers (2021-09-21T08:07:27Z) - DeepQAMVS: Query-Aware Hierarchical Pointer Networks for Multi-Video
Summarization [127.16984421969529]
We introduce a novel Query-Aware Hierarchical Pointer Network for Multi-Video Summarization, termed DeepQAMVS.
DeepQAMVS is trained with reinforcement learning, incorporating rewards that capture representativeness, diversity, query-adaptability and temporal coherence.
We achieve state-of-the-art results on the MVS1K dataset, with inference time scaling linearly with the number of input video frames.
arXiv Detail & Related papers (2021-05-13T17:33:26Z) - A Hierarchical Multi-Modal Encoder for Moment Localization in Video
Corpus [31.387948069111893]
We show how to identify a short segment in a long video that semantically matches a text query.
To tackle this problem, we propose the HierArchical Multi-Modal EncodeR (HAMMER) that encodes a video at both the coarse-grained clip level and the fine-trimmed frame level.
We conduct extensive experiments to evaluate our model on moment localization in video corpus on ActivityNet Captions and TVR datasets.
arXiv Detail & Related papers (2020-11-18T02:42:36Z) - HERO: Hierarchical Encoder for Video+Language Omni-representation
Pre-training [75.55823420847759]
We present HERO, a novel framework for large-scale video+language omni-representation learning.
HERO encodes multimodal inputs in a hierarchical structure, where local context of a video frame is captured by a Cross-modal Transformer.
HERO is jointly trained on HowTo100M and large-scale TV datasets to gain deep understanding of complex social dynamics with multi-character interactions.
arXiv Detail & Related papers (2020-05-01T03:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.