Prompting Video-Language Foundation Models with Domain-specific Fine-grained Heuristics for Video Question Answering
- URL: http://arxiv.org/abs/2410.09380v1
- Date: Sat, 12 Oct 2024 06:22:23 GMT
- Title: Prompting Video-Language Foundation Models with Domain-specific Fine-grained Heuristics for Video Question Answering
- Authors: Ting Yu, Kunhao Fu, Shuhui Wang, Qingming Huang, Jun Yu,
- Abstract summary: HeurVidQA is a framework that leverages domain-specific entity-actions to refine pre-trained video-language foundation models.
Our approach treats these models as implicit knowledge engines, employing domain-specific entity-action prompters to direct the model's focus toward precise cues that enhance reasoning.
- Score: 71.62961521518731
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video Question Answering (VideoQA) represents a crucial intersection between video understanding and language processing, requiring both discriminative unimodal comprehension and sophisticated cross-modal interaction for accurate inference. Despite advancements in multi-modal pre-trained models and video-language foundation models, these systems often struggle with domain-specific VideoQA due to their generalized pre-training objectives. Addressing this gap necessitates bridging the divide between broad cross-modal knowledge and the specific inference demands of VideoQA tasks. To this end, we introduce HeurVidQA, a framework that leverages domain-specific entity-action heuristics to refine pre-trained video-language foundation models. Our approach treats these models as implicit knowledge engines, employing domain-specific entity-action prompters to direct the model's focus toward precise cues that enhance reasoning. By delivering fine-grained heuristics, we improve the model's ability to identify and interpret key entities and actions, thereby enhancing its reasoning capabilities. Extensive evaluations across multiple VideoQA datasets demonstrate that our method significantly outperforms existing models, underscoring the importance of integrating domain-specific knowledge into video-language models for more accurate and context-aware VideoQA.
Related papers
- Multi-Modal interpretable automatic video captioning [1.9874264019909988]
We introduce a novel video captioning method trained with multi-modal contrastive loss.
Our approach is designed to capture the dependency between these modalities, resulting in more accurate, thus pertinent captions.
arXiv Detail & Related papers (2024-11-11T11:12:23Z) - Multi-granularity Contrastive Cross-modal Collaborative Generation for End-to-End Long-term Video Question Answering [53.39158264785098]
Long-term Video Question Answering (VideoQA) is a challenging vision-and-language bridging task.
We present an entirely end-to-end solution for VideoQA: Multi-granularity Contrastive cross-modal collaborative Generation model.
arXiv Detail & Related papers (2024-10-12T06:21:58Z) - Direct Preference Optimization of Video Large Multimodal Models from Language Model Reward [118.65089648651308]
This paper introduces a novel framework that utilizes detailed video captions as a proxy of video content.
We show that applying this tailored reward through DPO significantly improves the performance of video LMMs on video Question Answering (QA) tasks.
arXiv Detail & Related papers (2024-04-01T17:28:16Z) - RTQ: Rethinking Video-language Understanding Based on Image-text Model [55.278942477715084]
Video-language understanding presents unique challenges due to the inclusion of highly complex semantic details.
We propose a novel framework called RTQ, which addresses these challenges simultaneously.
Our model demonstrates outstanding performance even in the absence of video-language pre-training.
arXiv Detail & Related papers (2023-12-01T04:51:01Z) - Collaborative Reasoning on Multi-Modal Semantic Graphs for
Video-Grounded Dialogue Generation [53.87485260058957]
We study video-grounded dialogue generation, where a response is generated based on the dialogue context and the associated video.
The primary challenges of this task lie in (1) the difficulty of integrating video data into pre-trained language models (PLMs)
We propose a multi-agent reinforcement learning method to collaboratively perform reasoning on different modalities.
arXiv Detail & Related papers (2022-10-22T14:45:29Z) - Rethinking Multi-Modal Alignment in Video Question Answering from
Feature and Sample Perspectives [30.666823939595627]
This paper reconsiders the multi-modal alignment problem in VideoQA from feature and sample perspectives.
We adopt a heterogeneous graph architecture and design a hierarchical framework to align both trajectory-level and frame-level visual feature with language feature.
Our method outperforms all the state-of-the-art models on the challenging NExT-QA benchmark.
arXiv Detail & Related papers (2022-04-25T10:42:07Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
We propose a video question answering model which effectively integrates multi-modal input sources and finds the temporally relevant information to answer questions.
Our model is also comprised of dual-level attention (word/object and frame level), multi-head self-cross-integration for different sources (video and dense captions), and which pass more relevant information to gates.
We evaluate our model on the challenging TVQA dataset, where each of our model components provides significant gains, and our overall model outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-05-13T16:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.