Over-parameterization and Adversarial Robustness in Neural Networks: An Overview and Empirical Analysis
- URL: http://arxiv.org/abs/2406.10090v1
- Date: Fri, 14 Jun 2024 14:47:06 GMT
- Title: Over-parameterization and Adversarial Robustness in Neural Networks: An Overview and Empirical Analysis
- Authors: Zhang Chen, Luca Demetrio, Srishti Gupta, Xiaoyi Feng, Zhaoqiang Xia, Antonio Emanuele CinĂ , Maura Pintor, Luca Oneto, Ambra Demontis, Battista Biggio, Fabio Roli,
- Abstract summary: Having a large parameter space is considered one of the main suspects of the neural networks' vulnerability to adversarial example.
Previous research has demonstrated that depending on the considered model, the algorithm employed to generate adversarial examples may not function properly.
- Score: 25.993502776271022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thanks to their extensive capacity, over-parameterized neural networks exhibit superior predictive capabilities and generalization. However, having a large parameter space is considered one of the main suspects of the neural networks' vulnerability to adversarial example -- input samples crafted ad-hoc to induce a desired misclassification. Relevant literature has claimed contradictory remarks in support of and against the robustness of over-parameterized networks. These contradictory findings might be due to the failure of the attack employed to evaluate the networks' robustness. Previous research has demonstrated that depending on the considered model, the algorithm employed to generate adversarial examples may not function properly, leading to overestimating the model's robustness. In this work, we empirically study the robustness of over-parameterized networks against adversarial examples. However, unlike the previous works, we also evaluate the considered attack's reliability to support the results' veracity. Our results show that over-parameterized networks are robust against adversarial attacks as opposed to their under-parameterized counterparts.
Related papers
- Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Robust Transferable Feature Extractors: Learning to Defend Pre-Trained
Networks Against White Box Adversaries [69.53730499849023]
We show that adversarial examples can be successfully transferred to another independently trained model to induce prediction errors.
We propose a deep learning-based pre-processing mechanism, which we refer to as a robust transferable feature extractor (RTFE)
arXiv Detail & Related papers (2022-09-14T21:09:34Z) - Masking Adversarial Damage: Finding Adversarial Saliency for Robust and
Sparse Network [33.18197518590706]
Adversarial examples provoke weak reliability and potential security issues in deep neural networks.
We propose a novel adversarial pruning method, Masking Adversarial Damage (MAD) that employs second-order information of adversarial loss.
We show that MAD effectively prunes adversarially trained networks without loosing adversarial robustness and shows better performance than previous adversarial pruning methods.
arXiv Detail & Related papers (2022-04-06T11:28:06Z) - Pruning in the Face of Adversaries [0.0]
We evaluate the impact of neural network pruning on the adversarial robustness against L-0, L-2 and L-infinity attacks.
Our results confirm that neural network pruning and adversarial robustness are not mutually exclusive.
We extend our analysis to situations that incorporate additional assumptions on the adversarial scenario and show that depending on the situation, different strategies are optimal.
arXiv Detail & Related papers (2021-08-19T09:06:16Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
We propose a new probabilistic adversarial detector motivated by a recently introduced non-robust feature.
In this paper, we consider the non-robust features as a common property of adversarial examples, and we deduce it is possible to find a cluster in representation space corresponding to the property.
This idea leads us to probability estimate distribution of adversarial representations in a separate cluster, and leverage the distribution for a likelihood based adversarial detector.
arXiv Detail & Related papers (2020-12-07T07:21:18Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
We investigate the transferability of adversarial examples for text classification models.
We propose a genetic algorithm to find an ensemble of models that can induce adversarial examples to fool almost all existing models.
We derive word replacement rules that can be used for model diagnostics from these adversarial examples.
arXiv Detail & Related papers (2020-11-17T10:45:05Z) - Recent Advances in Understanding Adversarial Robustness of Deep Neural
Networks [15.217367754000913]
It is increasingly important to obtain models with high robustness that are resistant to adversarial examples.
We give preliminary definitions on what adversarial attacks and robustness are.
We study frequently-used benchmarks and mention theoretically-proved bounds for adversarial robustness.
arXiv Detail & Related papers (2020-11-03T07:42:53Z) - Exploring the Vulnerability of Deep Neural Networks: A Study of
Parameter Corruption [40.76024057426747]
We propose an indicator to measure the robustness of neural network parameters by exploiting their vulnerability via parameter corruption.
For practical purposes, we give a gradient-based estimation, which is far more effective than random corruption trials.
arXiv Detail & Related papers (2020-06-10T02:29:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.