Recent Advances in Understanding Adversarial Robustness of Deep Neural
Networks
- URL: http://arxiv.org/abs/2011.01539v1
- Date: Tue, 3 Nov 2020 07:42:53 GMT
- Title: Recent Advances in Understanding Adversarial Robustness of Deep Neural
Networks
- Authors: Tao Bai, Jinqi Luo, Jun Zhao
- Abstract summary: It is increasingly important to obtain models with high robustness that are resistant to adversarial examples.
We give preliminary definitions on what adversarial attacks and robustness are.
We study frequently-used benchmarks and mention theoretically-proved bounds for adversarial robustness.
- Score: 15.217367754000913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial examples are inevitable on the road of pervasive applications of
deep neural networks (DNN). Imperceptible perturbations applied on natural
samples can lead DNN-based classifiers to output wrong prediction with fair
confidence score. It is increasingly important to obtain models with high
robustness that are resistant to adversarial examples. In this paper, we survey
recent advances in how to understand such intriguing property, i.e. adversarial
robustness, from different perspectives. We give preliminary definitions on
what adversarial attacks and robustness are. After that, we study
frequently-used benchmarks and mention theoretically-proved bounds for
adversarial robustness. We then provide an overview on analyzing correlations
among adversarial robustness and other critical indicators of DNN models.
Lastly, we introduce recent arguments on potential costs of adversarial
training which have attracted wide attention from the research community.
Related papers
- Over-parameterization and Adversarial Robustness in Neural Networks: An Overview and Empirical Analysis [25.993502776271022]
Having a large parameter space is considered one of the main suspects of the neural networks' vulnerability to adversarial example.
Previous research has demonstrated that depending on the considered model, the algorithm employed to generate adversarial examples may not function properly.
arXiv Detail & Related papers (2024-06-14T14:47:06Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
adversarial examples can manipulate machine learning models into making erroneous predictions.
The transferability of adversarial examples enables black-box attacks which circumvent the need for detailed knowledge of the target model.
This survey explores the landscape of the adversarial transferability of adversarial examples.
arXiv Detail & Related papers (2023-10-26T17:45:26Z) - Not So Robust After All: Evaluating the Robustness of Deep Neural
Networks to Unseen Adversarial Attacks [5.024667090792856]
Deep neural networks (DNNs) have gained prominence in various applications, such as classification, recognition, and prediction.
A fundamental attribute of traditional DNNs is their vulnerability to modifications in input data, which has resulted in the investigation of adversarial attacks.
This study aims to challenge the efficacy and generalization of contemporary defense mechanisms against adversarial attacks.
arXiv Detail & Related papers (2023-08-12T05:21:34Z) - Demystifying Causal Features on Adversarial Examples and Causal
Inoculation for Robust Network by Adversarial Instrumental Variable
Regression [32.727673706238086]
We propose a way of delving into the unexpected vulnerability in adversarially trained networks from a causal perspective.
By deploying it, we estimate the causal relation of adversarial prediction under an unbiased environment.
We demonstrate that the estimated causal features are highly related to the correct prediction for adversarial robustness.
arXiv Detail & Related papers (2023-03-02T08:18:22Z) - Improving Adversarial Robustness via Mutual Information Estimation [144.33170440878519]
Deep neural networks (DNNs) are found to be vulnerable to adversarial noise.
In this paper, we investigate the dependence between outputs of the target model and input adversarial samples from the perspective of information theory.
We propose to enhance the adversarial robustness by maximizing the natural MI and minimizing the adversarial MI during the training process.
arXiv Detail & Related papers (2022-07-25T13:45:11Z) - On the Relationship Between Adversarial Robustness and Decision Region
in Deep Neural Network [26.656444835709905]
We study the internal properties of Deep Neural Networks (DNNs) that affect model robustness under adversarial attacks.
We propose the novel concept of the Populated Region Set (PRS), where training samples are populated more frequently.
arXiv Detail & Related papers (2022-07-07T16:06:34Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
Adrial training is proved to be the most effective strategy that injects adversarial examples into model training.
We propose a novel adversarial training framework called LAtent bounDary-guided aDvErsarial tRaining.
arXiv Detail & Related papers (2022-06-08T07:40:55Z) - Pruning in the Face of Adversaries [0.0]
We evaluate the impact of neural network pruning on the adversarial robustness against L-0, L-2 and L-infinity attacks.
Our results confirm that neural network pruning and adversarial robustness are not mutually exclusive.
We extend our analysis to situations that incorporate additional assumptions on the adversarial scenario and show that depending on the situation, different strategies are optimal.
arXiv Detail & Related papers (2021-08-19T09:06:16Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
We propose adversarial self-supervision UDA (or ASSUDA) that maximizes the agreement between clean images and their adversarial examples by a contrastive loss in the output space.
This paper is rooted in two observations: (i) the robustness of UDA methods in semantic segmentation remains unexplored, which pose a security concern in this field; and (ii) although commonly used self-supervision (e.g., rotation and jigsaw) benefits image tasks such as classification and recognition, they fail to provide the critical supervision signals that could learn discriminative representation for segmentation tasks.
arXiv Detail & Related papers (2021-05-23T01:50:44Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.