論文の概要: Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning
- arxiv url: http://arxiv.org/abs/2406.10099v2
- Date: Sat, 12 Oct 2024 14:52:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:03:09.151933
- Title: Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning
- Title(参考訳): 未知の知識:LLMインストラクションチューニングの不確かさに敏感な方法
- Authors: Jiaqi Li, Yixuan Tang, Yi Yang,
- Abstract要約: 大きな言語モデル(LLM)は目覚ましい能力を示しているが、幻覚のような課題に直面している。
本研究では,モデルの知識境界を認識する能力を向上させるために,不確実性感性チューニングと呼ばれる新しい手法を提案する。
実験結果から,提案手法が不確実性領域の同定能力を高めることが示唆された。
- 参考スコア(独自算出の注目度): 18.283963879468466
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities but still face challenges such as hallucinations. One potential reason for hallucinations is the lack of relevant knowledge or context. Thus, a promising solution involves instructing LLMs to respond with "I do not know" when a question falls outside their knowledge domain or the provided context. However, in this work, we observed that LLMs struggle to admit their lack of knowledge, primarily due to existing instruction datasets designed to encourage specific answers. To improve models' capability to recognize the boundaries of their knowledge, we propose a novel approach called uncertainty-sensitive tuning. This method involves two-stage training designed for uncertainty recognition and prompt-sensitive activation. In the first stage, we guide the LLM to reject unknown questions. In the second stage, we force the model to follow the instructions by incorporating designed causal instructions. The experimental results demonstrate that our proposed uncertainty-sensitive tuning method enhance the model's ability to identify areas of uncertainty. Specifically, it achieves a substantial improvement of up to 34.7% in handling questions involving knowledge gaps compared to the original model. Moreover, our finetuned models even outperform GPT-4, exhibiting an overall performance improvement of up to 4.2%.
- Abstract(参考訳): 大きな言語モデル(LLM)は目覚ましい能力を示しているが、幻覚のような課題に直面している。
幻覚の潜在的な理由は、関連する知識や文脈の欠如である。
したがって、有望な解決策は、質問が知識領域や提供されたコンテキストの外にあるときに「私は知らない」と答えるようLLMに指示することである。
しかし,本研究では,LLMが知識の欠如を認めるのに苦労していることが明らかとなった。
モデルが知識の境界を認識する能力を向上させるために,不確実性感性チューニングと呼ばれる新しい手法を提案する。
この方法は、不確実性認識とアクティベーションのアクティベーションのために設計された2段階の訓練を含む。
第一段階では LLM に未知の質問を拒否するよう指導する。
第2段階では、設計した因果命令を組み込むことで、モデルに指示に従うように強制する。
実験結果から,提案手法が不確実性領域の同定能力を高めることが示唆された。
具体的には、元のモデルと比較して知識ギャップに関する問題に対処する上で、最大34.7%の大幅な改善を実現している。
さらに,精細化モデルの方がGPT-4より優れ,全体の性能が4.2%向上した。
関連論文リスト
- Gradual Learning: Optimizing Fine-Tuning with Partially Mastered Knowledge in Large Language Models [51.20499954955646]
大規模言語モデル(LLM)は、事前学習期間中に大量のテキストコーパスから膨大な量の知識を取得する。
微調整や推論のような後段では、モデルは初期訓練でカバーされていない知識に遭遇する可能性がある。
本稿では,モデル全体のテスト精度と知識保持性を改善するための2段階の微調整戦略を提案する。
論文 参考訳(メタデータ) (2024-10-08T08:35:16Z) - UNLEARN Efficient Removal of Knowledge in Large Language Models [1.9797215742507548]
本稿では,UNLEARNと呼ばれる新しい手法を提案する。
このアプローチは、LLMの他の知識に悪影響を及ぼすことなく、知識の除去を識別し、特にターゲットとするサブスペース法に基づいている。
その結果、対象とする知識の96%は、元のモデルの2.5%の範囲内で、他の知識のパフォーマンスを維持しながら、忘れられることを示した。
論文 参考訳(メタデータ) (2024-08-08T00:53:31Z) - Rejection Improves Reliability: Training LLMs to Refuse Unknown Questions Using RL from Knowledge Feedback [14.120154004011084]
LLM(Large Language Models)はしばしば幻覚と呼ばれる誤った出力を生成する。
知識フィードバックによる強化学習(Reinforcement Learning from Knowledge Feedback, RLKF)と呼ばれる新しいアライメントフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-27T08:39:56Z) - KnowTuning: Knowledge-aware Fine-tuning for Large Language Models [83.5849717262019]
本研究では,LLMの微粒で粗粒な知識認識を改善するための知識認識ファインタニング(KnowTuning)手法を提案する。
KnowTuningは、きめ細かい事実評価の下で、より少ない事実エラー率で多くの事実を生成する。
論文 参考訳(メタデータ) (2024-02-17T02:54:32Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
大規模言語モデル(LLM)の画期的な能力として、文脈内学習が登場している。
両タイプの不確かさを定量化するための新しい定式化法とそれに対応する推定法を提案する。
提案手法は、プラグイン・アンド・プレイ方式でコンテキスト内学習の予測を理解するための教師なしの方法を提供する。
論文 参考訳(メタデータ) (2024-02-15T18:46:24Z) - R-Tuning: Instructing Large Language Models to Say `I Don't Know' [66.11375475253007]
大きな言語モデル(LLM)は、優れたパフォーマンスで多くのドメインに革命をもたらしたが、それでもその課題に直面している。
事前の指導チューニング方法は、モデルが知識を知っているかどうかに関わらず、モデルに文章を完成させるよう強制する。
我々はRefusal-Aware Instruction Tuning (R-Tuning)と呼ばれる新しいアプローチを提案する。
実験の結果、R-Tuningは、既知の質問に答えたり、未知の質問に答えるのを控えるモデルの能力を効果的に改善することを示した。
論文 参考訳(メタデータ) (2023-11-16T08:45:44Z) - Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake
Analysis [127.85293480405082]
大規模言語モデル(LLM)の急速な開発は、多くの機会を提供するだけでなく、重要な課題も提示している。
既存のアライメント手法は、人間による注釈付き、欠陥のない命令応答ペアを利用することで、LLMを好ましい結果に導くのが一般的である。
本研究は誤り解析に基づく新しいアライメント手法を提案する。ミスの原因と回避方法を学習するために,LLMを誤った内容に故意に公開する手法である。
論文 参考訳(メタデータ) (2023-10-16T14:59:10Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
大規模言語モデルはしばしば「ハロシン化」の課題に直面している
本研究では,不確実性に応答してモデルが出力を拡張あるいは拒否することを可能にする,不確実性を考慮したコンテキスト内学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-07T12:06:53Z) - Knowledge of Knowledge: Exploring Known-Unknowns Uncertainty with Large Language Models [44.117620571329596]
我々は,不確定な回答がないことによる不確実性の高さを特徴とする,未知の疑問に対処することに注力する。
研究を容易にするために,Known-Unknown Questions (KUQ) を用いた新しいデータセットを収集した。
本稿では、このデータセットを用いて微調整したオープンソースのLLMの性能について検討し、未知のクエリと未知のクエリを区別する。
論文 参考訳(メタデータ) (2023-05-23T05:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。