Enhancing Incomplete Multi-modal Brain Tumor Segmentation with Intra-modal Asymmetry and Inter-modal Dependency
- URL: http://arxiv.org/abs/2406.10175v1
- Date: Fri, 14 Jun 2024 16:54:53 GMT
- Title: Enhancing Incomplete Multi-modal Brain Tumor Segmentation with Intra-modal Asymmetry and Inter-modal Dependency
- Authors: Weide Liu, Jingwen Hou, Xiaoyang Zhong, Huijing Zhan, Jun Cheng, Yuming Fang, Guanghui Yue,
- Abstract summary: A common problem in practice is the unavailability of some modalities due to varying scanning protocols and patient conditions.
Previous methods have attempted to address this by fusing accessible multi-modal features, leveraging attention mechanisms, and synthesizing missing modalities.
We propose a novel approach that enhances the deep learning-based brain tumor segmentation model from two perspectives.
- Score: 31.047259264831947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based brain tumor segmentation (BTS) models for multi-modal MRI images have seen significant advancements in recent years. However, a common problem in practice is the unavailability of some modalities due to varying scanning protocols and patient conditions, making segmentation from incomplete MRI modalities a challenging issue. Previous methods have attempted to address this by fusing accessible multi-modal features, leveraging attention mechanisms, and synthesizing missing modalities using generative models. However, these methods ignore the intrinsic problems of medical image segmentation, such as the limited availability of training samples, particularly for cases with tumors. Furthermore, these methods require training and deploying a specific model for each subset of missing modalities. To address these issues, we propose a novel approach that enhances the BTS model from two perspectives. Firstly, we introduce a pre-training stage that generates a diverse pre-training dataset covering a wide range of different combinations of tumor shapes and brain anatomy. Secondly, we propose a post-training stage that enables the model to reconstruct missing modalities in the prediction results when only partial modalities are available. To achieve the pre-training stage, we conceptually decouple the MRI image into two parts: `anatomy' and `tumor'. We pre-train the BTS model using synthesized data generated from the anatomy and tumor parts across different training samples. ... Extensive experiments demonstrate that our proposed method significantly improves the performance over the baseline and achieves new state-of-the-art results on three brain tumor segmentation datasets: BRATS2020, BRATS2018, and BRATS2015.
Related papers
- MedMAP: Promoting Incomplete Multi-modal Brain Tumor Segmentation with Alignment [20.358300924109162]
In clinical practice, certain modalities of MRI may be missing, which presents a more difficult scenario.
Knowledge Distillation, Domain Adaption, and Shared Latent Space have emerged as commonly promising strategies.
We propose a novel paradigm that aligns latent features of involved modalities to a well-defined distribution anchor as the substitution of the pre-trained model.
arXiv Detail & Related papers (2024-08-18T13:16:30Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - M3AE: Multimodal Representation Learning for Brain Tumor Segmentation
with Missing Modalities [29.455215925816187]
Multimodal magnetic resonance imaging (MRI) provides complementary information for sub-region analysis of brain tumors.
It is common to have one or more modalities missing due to image corruption, artifacts, acquisition protocols, allergy to contrast agents, or simply cost.
We propose a novel two-stage framework for brain tumor segmentation with missing modalities.
arXiv Detail & Related papers (2023-03-09T14:54:30Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - DIGEST: Deeply supervIsed knowledGE tranSfer neTwork learning for brain
tumor segmentation with incomplete multi-modal MRI scans [16.93394669748461]
Brain tumor segmentation based on multi-modal magnetic resonance imaging (MRI) plays a pivotal role in assisting brain cancer diagnosis, treatment, and postoperative evaluations.
Despite the achieved inspiring performance by existing automatic segmentation methods, multi-modal MRI data are still unavailable in real-world clinical applications.
We propose a Deeply supervIsed knowledGE tranSfer neTwork (DIGEST), which achieves accurate brain tumor segmentation under different modality-missing scenarios.
arXiv Detail & Related papers (2022-11-15T09:01:14Z) - Learning Multi-Modal Brain Tumor Segmentation from Privileged
Semi-Paired MRI Images with Curriculum Disentanglement Learning [4.43142018105102]
We present a novel two-step (intra-modality and inter-modality) curriculum disentanglement learning framework for brain tumor segmentation.
In the first step, we propose to conduct reconstruction and segmentation with augmented intra-modality style-consistent images.
In the second step, the model jointly performs reconstruction, unsupervised/supervised translation, and segmentation for both unpaired and paired inter-modality images.
arXiv Detail & Related papers (2022-08-26T16:52:43Z) - CKD-TransBTS: Clinical Knowledge-Driven Hybrid Transformer with
Modality-Correlated Cross-Attention for Brain Tumor Segmentation [37.39921484146194]
Brain tumor segmentation in magnetic resonance image (MRI) is crucial for brain tumor diagnosis, cancer management and research purposes.
With the great success of the ten-year BraTS challenges, a lot of outstanding BTS models have been proposed to tackle the difficulties of BTS in different technical aspects.
We propose a clinical knowledge-driven brain tumor segmentation model, called CKD-TransBTS.
arXiv Detail & Related papers (2022-07-15T09:35:29Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
We propose a novel multimodal segmentation framework which is robust to the absence of imaging modalities.
Our network uses feature disentanglement to decompose the input modalities into the modality-specific appearance code.
We validate our method on the important yet challenging multimodal brain tumor segmentation task with the BRATS challenge dataset.
arXiv Detail & Related papers (2020-02-22T14:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.