論文の概要: Inclusive ASR for Disfluent Speech: Cascaded Large-Scale Self-Supervised Learning with Targeted Fine-Tuning and Data Augmentation
- arxiv url: http://arxiv.org/abs/2406.10177v1
- Date: Fri, 14 Jun 2024 16:56:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 12:46:51.816811
- Title: Inclusive ASR for Disfluent Speech: Cascaded Large-Scale Self-Supervised Learning with Targeted Fine-Tuning and Data Augmentation
- Title(参考訳): 難読音声のための包括的ASR:ターゲットの微調整とデータ拡張による大規模自己教師付き学習
- Authors: Dena Mujtaba, Nihar R. Mahapatra, Megan Arney, J. Scott Yaruss, Caryn Herring, Jia Bin,
- Abstract要約: 進歩への重要な障壁は、大きな注釈付き不適切な音声データセットの不足である。
本稿では,標準音声における自己教師型学習を応用した包括的ASR設計手法を提案する。
結果から,比較的小さなラベル付きデータセットによる微調整wav2vec 2.0とデータ拡張による単語誤り率の低減効果が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automatic speech recognition (ASR) systems often falter while processing stuttering-related disfluencies -- such as involuntary blocks and word repetitions -- yielding inaccurate transcripts. A critical barrier to progress is the scarcity of large, annotated disfluent speech datasets. Therefore, we present an inclusive ASR design approach, leveraging large-scale self-supervised learning on standard speech followed by targeted fine-tuning and data augmentation on a smaller, curated dataset of disfluent speech. Our data augmentation technique enriches training datasets with various disfluencies, enhancing ASR processing of these speech patterns. Results show that fine-tuning wav2vec 2.0 with even a relatively small, labeled dataset, alongside data augmentation, can significantly reduce word error rates for disfluent speech. Our approach not only advances ASR inclusivity for people who stutter, but also paves the way for ASRs that can accommodate wider speech variations.
- Abstract(参考訳): 自動音声認識(ASR)システムは、しばしば、不随意ブロックや単語の繰り返しなど、散らばった関連する不一致を処理しながら、不正確な書き起こしを生成する。
進歩への重要な障壁は、大きな注釈付き不適切な音声データセットの不足である。
そこで本研究では,大規模自己教師型学習を標準音声に適用した包括的ASR設計手法を提案する。
我々のデータ拡張技術は、これらの音声パターンのASR処理を強化し、様々な相違のあるトレーニングデータセットを豊かにする。
結果から,比較的小さなラベル付きデータセットによる微調整wav2vec 2.0とデータ拡張による単語誤り率の低減効果が示唆された。
我々のアプローチは、混乱する人々に対するASRの傾きを前進させるだけでなく、より広い言論のバリエーションに対応するためのASRの道を開く。
関連論文リスト
- Enhancing AAC Software for Dysarthric Speakers in e-Health Settings: An Evaluation Using TORGO [0.13108652488669734]
脳性麻痺 (CP) と筋萎縮性側索硬化症 (ALS) の患者は, 関節症に悩まされ, 変形性関節症, 非典型的発声パターンを呈する。
我々は、Whisper や Wav2vec2.0 のような最先端の音声認識(SOTA)技術が、訓練データがないために非定型話者を疎外することがわかった。
我々の研究は、SOTA ASRとドメイン固有のエラー訂正を活用することを目指している。
論文 参考訳(メタデータ) (2024-11-01T19:11:54Z) - MEDSAGE: Enhancing Robustness of Medical Dialogue Summarization to ASR Errors with LLM-generated Synthetic Dialogues [41.23757609484281]
音声認識エラーは、要約のような下流タスクのパフォーマンスを著しく低下させる可能性がある。
大規模言語モデルを用いたデータ拡張のための合成サンプル生成手法であるMEDSAGEを提案する。
LLMは、ASRノイズを効果的にモデル化することができ、このノイズデータをトレーニングプロセスに組み込むことで、医用対話要約システムの堅牢性と精度が大幅に向上する。
論文 参考訳(メタデータ) (2024-08-26T17:04:00Z) - Towards Unsupervised Speech Recognition Without Pronunciation Models [57.222729245842054]
ほとんどの言語では、音声認識システムを効果的に訓練するのに十分なペア音声とテキストデータがない。
本稿では、教師なしASRシステムを開発するために、音素レキシコンへの依存を除去することを提案する。
音声合成とテキスト・テキスト・マスクによるトークン埋込から教師なし音声認識が実現可能であることを実験的に実証した。
論文 参考訳(メタデータ) (2024-06-12T16:30:58Z) - Lost in Transcription: Identifying and Quantifying the Accuracy Biases of Automatic Speech Recognition Systems Against Disfluent Speech [0.0]
音声認識システムは、典型的な流布から逸脱した音声パターンを正確に解釈することができず、重要なユーザビリティの問題や誤解釈につながる。
本研究は6つの主要なASRを解析し,発話サンプルの実際のデータセットと,広範に使用されているLibriSpeechベンチマークから得られた合成データセットを解析した。
結果より,すべてのASRにおいて,非流動性音声に対する一貫した,統計的に有意な精度バイアスがみられ,転写における意味的不正確性や意味的不正確性がみられた。
論文 参考訳(メタデータ) (2024-05-10T00:16:58Z) - BRAVEn: Improving Self-Supervised Pre-training for Visual and Auditory Speech Recognition [72.51848069125822]
本稿では,RAVEn法の拡張であるBRAVEnを提案する。
RAVEnの修正により、BRAVEnは自己教師付き手法で最先端の結果を得ることができる。
以上の結果から,手軽に手軽に利用できる音声視覚データが,コストのかかる書き起こしデータに置き換わる可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-02T16:48:20Z) - Investigation of Data Augmentation Techniques for Disordered Speech
Recognition [69.50670302435174]
本稿では,不規則音声認識のための一連のデータ拡張手法について検討する。
正常な音声と無秩序な音声の両方が増強過程に利用された。
UASpeechコーパスを用いた最終話者適応システムと、最大2.92%の絶対単語誤り率(WER)の速度摂動に基づく最良の拡張アプローチ
論文 参考訳(メタデータ) (2022-01-14T17:09:22Z) - Improving Noise Robustness of Contrastive Speech Representation Learning
with Speech Reconstruction [109.44933866397123]
実環境における音声認識システムの実現には,雑音の堅牢性が不可欠である。
雑音認識のための自己教師型フレームワークにより学習したノイズロスト表現を用いる。
ラベル付きデータのわずか16%で報告された最高の教師付きアプローチに匹敵するパフォーマンスを実現した。
論文 参考訳(メタデータ) (2021-10-28T20:39:02Z) - Wav2vec-Switch: Contrastive Learning from Original-noisy Speech Pairs
for Robust Speech Recognition [52.71604809100364]
音声の文脈化表現に雑音のロバスト性をエンコードするwav2vec-Switchを提案する。
具体的には、オリジナルノイズの多い音声ペアを同時にwav2vec 2.0ネットワークに供給する。
既存のコントラスト学習タスクに加えて、原音声と雑音音声の量子化表現を追加の予測対象に切り替える。
論文 参考訳(メタデータ) (2021-10-11T00:08:48Z) - Improved Robustness to Disfluencies in RNN-Transducer Based Speech
Recognition [1.8702587873591643]
RNN-T ASRの発話障害に対する堅牢性向上を目的としたデータ選択と準備選択を検討する。
学習に不均一性のある少量のデータを含むと、不均一性や混乱を伴うテストの認識精度が向上することを示す。
論文 参考訳(メタデータ) (2020-12-11T11:47:13Z) - Data Augmentation for Training Dialog Models Robust to Speech
Recognition Errors [5.53506103787497]
Amazon Alexa、Google Assistant、Apple Siriなどの音声ベースのバーチャルアシスタントは、通常、ユーザーの音声信号を自動音声認識(ASR)を通じてテキストデータに変換する。
ASR出力はエラーを起こしやすいが、下流のダイアログモデルはしばしばエラーのないテキストデータに基づいて訓練され、推論時間中にASRエラーに敏感になる。
我々は、ASRエラーシミュレータを利用して、エラーのないテキストデータにノイズを注入し、その後、拡張データでダイアログモデルを訓練する。
論文 参考訳(メタデータ) (2020-06-10T03:18:15Z) - Improving Readability for Automatic Speech Recognition Transcription [50.86019112545596]
我々は、可読性のためのASRポストプロセッシング(APR)と呼ばれる新しいNLPタスクを提案する。
APRは、ノイズの多いASR出力を、話者の意味を保ちながら、人間や下流タスクのための読みやすいテキストに変換することを目的としている。
我々は,いくつかのオープンソースモデルと適応型事前学習モデルに基づく微調整モデルと,従来のパイプライン手法との比較を行った。
論文 参考訳(メタデータ) (2020-04-09T09:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。