論文の概要: SatDiffMoE: A Mixture of Estimation Method for Satellite Image Super-resolution with Latent Diffusion Models
- arxiv url: http://arxiv.org/abs/2406.10225v2
- Date: Mon, 18 Nov 2024 21:52:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:33:49.403748
- Title: SatDiffMoE: A Mixture of Estimation Method for Satellite Image Super-resolution with Latent Diffusion Models
- Title(参考訳): SatDiffMoE:遅延拡散モデルを用いた衛星画像超解像の混合推定法
- Authors: Zhaoxu Luo, Bowen Song, Liyue Shen,
- Abstract要約: 我々はtextbfSatDiffMoE と呼ばれる新しい拡散型融合アルゴリズムを提案する。
アルゴリズムは非常に柔軟で、任意の数の低解像度画像のトレーニングと推測が可能である。
実験の結果,SatDiffMoE法は衛星画像の超解像処理に優れていた。
- 参考スコア(独自算出の注目度): 3.839322642354617
- License:
- Abstract: During the acquisition of satellite images, there is generally a trade-off between spatial resolution and temporal resolution (acquisition frequency) due to the onboard sensors of satellite imaging systems. High-resolution satellite images are very important for land crop monitoring, urban planning, wildfire management and a variety of applications. It is a significant yet challenging task to achieve high spatial-temporal resolution in satellite imaging. With the advent of diffusion models, we can now learn strong generative priors to generate realistic satellite images with high resolution, which can be utilized to promote the super-resolution task as well. In this work, we propose a novel diffusion-based fusion algorithm called \textbf{SatDiffMoE} that can take an arbitrary number of sequential low-resolution satellite images at the same location as inputs, and fuse them into one high-resolution reconstructed image with more fine details, by leveraging and fusing the complementary information from different time points. Our algorithm is highly flexible and allows training and inference on arbitrary number of low-resolution images. Experimental results show that our proposed SatDiffMoE method not only achieves superior performance for the satellite image super-resolution tasks on a variety of datasets, but also gets an improved computational efficiency with reduced model parameters, compared with previous methods.
- Abstract(参考訳): 衛星画像の取得の際には、一般的に、衛星画像システムの搭載センサーによる空間分解能と時間分解能(取得周波数)の間にトレードオフがある。
高解像度の衛星画像は、土地の作物モニタリング、都市計画、山火事管理、様々な用途において非常に重要である。
衛星画像における高空間時間分解能を達成することは、非常に難しい課題である。
拡散モデルの出現により、高解像度で現実的な衛星画像を生成するための強力な生成先行を学習できるようになり、超高解像度タスクの促進にも活用できる。
本研究では,入力と同一位置にある連続した低解像度衛星画像の任意の個数を抽出し,異なる時間点から補完情報を利用・融合することにより,より詳細な高解像度再構成画像に分解することができる,新しい拡散型融合アルゴリズムである「textbf{SatDiffMoE}」を提案する。
アルゴリズムは非常に柔軟で、任意の数の低解像度画像のトレーニングと推測が可能である。
実験結果から,SatDiffMoE法は,各種データセットにおける衛星画像の超解像タスクの性能向上だけでなく,モデルパラメータの削減による計算効率の向上も期待できることがわかった。
関連論文リスト
- A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案する。
シミュレーション実験の結果,DSGAはSGNPFM問題を効果的に解くことができることがわかった。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - DiffusionSat: A Generative Foundation Model for Satellite Imagery [63.2807119794691]
現在、DiffusionSatは、現在利用可能な大規模な高解像度リモートセンシングデータセットのコレクションに基づいてトレーニングされている、最大の生成基盤モデルである。
提案手法は, リアルタイムなサンプルを作成し, 時間生成, マルチスペクトル入力の超解像, インペイントなどの複数の生成課題を解くのに利用できる。
論文 参考訳(メタデータ) (2023-12-06T16:53:17Z) - Fast Satellite Tensorial Radiance Field for Multi-date Satellite Imagery
of Large Size [0.76146285961466]
既存の衛星画像のNeRFモデルは、速度が遅いこと、入力として太陽情報を必要とすること、大きな衛星画像を扱う際の制限に悩まされている。
そこで本研究では,衛星画像の規模を小さくしながら,全過程を著しく加速するサテンソRFについて述べる。
論文 参考訳(メタデータ) (2023-09-21T04:00:38Z) - RSDiff: Remote Sensing Image Generation from Text Using Diffusion Model [0.8747606955991705]
本研究では,高解像度衛星画像をテキストプロンプトから合成するための2段階拡散モデル手法を提案する。
このパイプラインは、テキスト入力に基づいて初期画像を生成する低解像度拡散モデル(LRDM)と、これらの画像を高解像度出力に洗練する超解拡散モデル(SRDM)から構成される。
論文 参考訳(メタデータ) (2023-09-03T09:34:49Z) - Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization
Using Satellite Image [91.29546868637911]
本稿では,地上画像と架空衛星地図とをマッチングすることにより,車載カメラのローカライゼーションの問題に対処する。
鍵となる考え方は、タスクをポーズ推定として定式化し、ニューラルネットベースの最適化によってそれを解くことである。
標準自動運転車のローカライゼーションデータセットの実験により,提案手法の優位性が確認された。
論文 参考訳(メタデータ) (2022-04-10T19:16:58Z) - Spatial-Temporal Super-Resolution of Satellite Imagery via Conditional
Pixel Synthesis [66.50914391487747]
高精度な高解像度画像を生成するために,高解像度の高解像度画像を用いた条件付き画素合成モデルを提案する。
我々は,本モデルにおいて,オブジェクトカウントという重要なダウンストリームタスクにおいて,フォトリアリスティックなサンプル品質を実現し,競合するベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-22T02:16:24Z) - Unsupervised Remote Sensing Super-Resolution via Migration Image Prior [12.728430583409997]
低解像度・高分解能の画像ペアを使わずに超解像タスクを実現する新しい非監視学習フレームワーク「MIP」を提案する。
本論文では,MIPが定量的および定性的に最先端の手法よりも有意な改善を達成できることを示した。
論文 参考訳(メタデータ) (2021-05-08T03:29:35Z) - Fusion of Deep and Non-Deep Methods for Fast Super-Resolution of
Satellite Images [54.44842669325082]
本研究は,超解像(SR)による画質向上により,画質と価格のギャップを埋めることを提案する。
低解像度画像の各パッチの地域情報内容を解析するSRフレームワークを設計する。
本研究では,既存の深部SR法と同等の性能を示しながら,推定時間を大幅に減少させることを示した。
論文 参考訳(メタデータ) (2020-08-03T13:55:39Z) - HighRes-net: Recursive Fusion for Multi-Frame Super-Resolution of
Satellite Imagery [55.253395881190436]
MFSR(Multi-frame Super-Resolution)は、問題に対するより根底的なアプローチを提供する。
これは、地球上の人間の影響を衛星で観測する上で重要である。
我々は,MFSRにおける最初のディープラーニングアプローチであるHighRes-netを紹介し,そのサブタスクをエンドツーエンドで学習する。
論文 参考訳(メタデータ) (2020-02-15T22:17:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。