論文の概要: Robust portfolio optimization for recommender systems considering uncertainty of estimated statistics
- arxiv url: http://arxiv.org/abs/2406.10250v2
- Date: Sun, 29 Sep 2024 10:18:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:57:51.197696
- Title: Robust portfolio optimization for recommender systems considering uncertainty of estimated statistics
- Title(参考訳): 推定統計の不確実性を考慮したレコメンダシステムのロバストポートフォリオ最適化
- Authors: Tomoya Yanagi, Shunnosuke Ikeda, Yuichi Takano,
- Abstract要約: 本稿では,基数に基づく不確実性集合に基づく推定統計の不確実性に対応する,ロバストなポートフォリオ最適化モデルを提案する。
提案手法は,様々なレーティング予測アルゴリズムの推薦品質を向上させる可能性がある。
- 参考スコア(独自算出の注目度): 2.928964540437144
- License:
- Abstract: This paper is concerned with portfolio optimization models for creating high-quality lists of recommended items to balance the accuracy and diversity of recommendations. However, the statistics (i.e., expectation and covariance of ratings) required for mean--variance portfolio optimization are subject to inevitable estimation errors. To remedy this situation, we focus on robust optimization techniques that derive reliable solutions to uncertain optimization problems. Specifically, we propose a robust portfolio optimization model that copes with the uncertainty of estimated statistics based on the cardinality-based uncertainty sets. This robust portfolio optimization model can be reduced to a mixed-integer linear optimization problem, which can be solved exactly using mathematical optimization solvers. Experimental results using two publicly available rating datasets demonstrate that our method can improve not only the recommendation accuracy but also the diversity of recommendations compared with conventional mean--variance portfolio optimization models. Notably, our method has the potential to improve the recommendation quality of various rating prediction algorithms.
- Abstract(参考訳): 本稿では,推薦項目の精度と多様性のバランスをとるために,推奨項目の高品質リストを作成するためのポートフォリオ最適化モデルについて検討する。
しかし、平均分散ポートフォリオ最適化に必要な統計(すなわち、評価の期待と共分散)は、避けられない推定誤差を伴っている。
この状況を改善するため、不確実な最適化問題に対する信頼性の高い解決策を導出する堅牢な最適化手法に焦点をあてる。
具体的には,基数に基づく不確実性集合に基づく推定統計の不確実性に対応する,ロバストなポートフォリオ最適化モデルを提案する。
このロバストなポートフォリオ最適化モデルは混合整数線形最適化問題に還元することができ、数学的最適化解法を用いて正確に解ける。
2つの公開評価データセットを用いた実験結果から,提案手法は推薦精度だけでなく,従来の平均分散ポートフォリオ最適化モデルと比較して推薦の多様性も向上できることが示された。
特に,本手法は,各種評価予測アルゴリズムの推薦品質を向上させる可能性がある。
関連論文リスト
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Robust personalized pricing under uncertainty of purchase probabilities [2.9061423802698565]
予測された購入確率の不確実性を考慮したパーソナライズ価格のロバストな最適化モデルを提案する。
また、線形探索と組み合わせたラグランジアン分解アルゴリズムを開発し、大規模最適化問題に対する高品質な解を効率的に見つける。
論文 参考訳(メタデータ) (2024-07-22T02:36:19Z) - Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
オンライン報酬指標の偏りのないオフライン推定を最適化する意思決定ポリシーを学習することを目指している。
学習シナリオにおける同値性に基づく単一のフレームワークを提案する。
我々のフレームワークは、分散最適非バイアス推定器の特徴付けを可能にし、それに対する閉形式解を提供する。
論文 参考訳(メタデータ) (2024-05-09T12:52:22Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Optimizer's Information Criterion: Dissecting and Correcting Bias in Data-Driven Optimization [16.57676001669012]
データ駆動最適化では、得られた決定のサンプル性能は通常、真の性能に対して楽観的なバイアスを生じさせる。
クロスバリデーションのような、このバイアスを修正するための一般的なテクニックは、追加の最適化問題を繰り返し解決する必要があるため、コストがかかる。
我々は一階偏差を直接近似する一般バイアス補正手法を開発し、追加の最適化問題を解く必要はない。
論文 参考訳(メタデータ) (2023-06-16T07:07:58Z) - Optimal Learning via Moderate Deviations Theory [4.6930976245638245]
我々は、中等度偏差原理に基づくアプローチを用いて、高精度な信頼区間の体系的構築を開発する。
提案した信頼区間は,指数的精度,最小性,整合性,誤評価確率,結果整合性(UMA)特性の基準を満たすという意味で統計的に最適であることが示されている。
論文 参考訳(メタデータ) (2023-05-23T19:57:57Z) - Online Calibrated and Conformal Prediction Improves Bayesian Optimization [10.470326550507117]
本稿では,モデルに基づく意思決定やベイズ最適化における不確実性について検討する。
しかし、キャリブレーションの維持は、データが定常的ではなく、我々の行動に依存する場合、困難である。
我々は、オンライン学習に基づく簡単なアルゴリズムを用いて、非i.d.データのキャリブレーションを確実に維持することを提案する。
論文 参考訳(メタデータ) (2021-12-08T23:26:23Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Bilevel Optimization for Differentially Private Optimization in Energy
Systems [53.806512366696275]
本稿では,入力に敏感な制約付き最適化問題に対して,差分プライバシーを適用する方法について検討する。
本稿は, 自然仮定の下では, 大規模非線形最適化問題に対して, 双レベルモデルを効率的に解けることを示す。
論文 参考訳(メタデータ) (2020-01-26T20:15:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。