AutoSurvey: Large Language Models Can Automatically Write Surveys
- URL: http://arxiv.org/abs/2406.10252v2
- Date: Tue, 18 Jun 2024 02:11:31 GMT
- Title: AutoSurvey: Large Language Models Can Automatically Write Surveys
- Authors: Yidong Wang, Qi Guo, Wenjin Yao, Hongbo Zhang, Xin Zhang, Zhen Wu, Meishan Zhang, Xinyu Dai, Min Zhang, Qingsong Wen, Wei Ye, Shikun Zhang, Yue Zhang,
- Abstract summary: This paper introduces AutoSurvey, a speedy and well-organized methodology for automating the creation of comprehensive literature surveys.
Traditional survey paper creation faces challenges due to the vast volume and complexity of information.
Our contributions include a comprehensive solution to the survey problem, a reliable evaluation method, and experimental validation demonstrating AutoSurvey's effectiveness.
- Score: 77.0458309675818
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces AutoSurvey, a speedy and well-organized methodology for automating the creation of comprehensive literature surveys in rapidly evolving fields like artificial intelligence. Traditional survey paper creation faces challenges due to the vast volume and complexity of information, prompting the need for efficient survey methods. While large language models (LLMs) offer promise in automating this process, challenges such as context window limitations, parametric knowledge constraints, and the lack of evaluation benchmarks remain. AutoSurvey addresses these challenges through a systematic approach that involves initial retrieval and outline generation, subsection drafting by specialized LLMs, integration and refinement, and rigorous evaluation and iteration. Our contributions include a comprehensive solution to the survey problem, a reliable evaluation method, and experimental validation demonstrating AutoSurvey's effectiveness.We open our resources at \url{https://github.com/AutoSurveys/AutoSurvey}.
Related papers
- Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation [65.16137964758612]
We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books.
Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text.
arXiv Detail & Related papers (2024-05-31T20:15:10Z) - Automated Evaluation of Retrieval-Augmented Language Models with Task-Specific Exam Generation [9.390902237835457]
We propose a new method to measure the task-specific accuracy of Retrieval-Augmented Large Language Models (RAG)
Evaluation is performed by scoring the RAG on an automatically-generated synthetic exam composed of multiple choice questions.
arXiv Detail & Related papers (2024-05-22T13:14:11Z) - Automating REST API Postman Test Cases Using LLM [0.0]
This research paper is dedicated to the exploration and implementation of an automated approach to generate test cases using Large Language Models.
The methodology integrates the use of Open AI to enhance the efficiency and effectiveness of test case generation.
The model that is developed during the research is trained using manually collected postman test cases or instances for various Rest APIs.
arXiv Detail & Related papers (2024-04-16T15:53:41Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - Emerging Results on Automated Support for Searching and Selecting
Evidence for Systematic Literature Review Updates [1.1153433121962064]
We present emerging results on an automated approach to support searching and selecting studies for SLR updates in Software Engineering.
We developed an automated tool prototype to perform the snowballing search technique and support selecting relevant studies for SLR updates using Machine Learning (ML) algorithms.
arXiv Detail & Related papers (2024-02-07T23:39:20Z) - AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning [54.47116888545878]
AutoAct is an automatic agent learning framework for QA.
It does not rely on large-scale annotated data and synthetic planning trajectories from closed-source models.
arXiv Detail & Related papers (2024-01-10T16:57:24Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
We propose a generative judge with 13B parameters, Auto-J, designed to address these challenges.
Our model is trained on user queries and LLM-generated responses under massive real-world scenarios.
Experimentally, Auto-J outperforms a series of strong competitors, including both open-source and closed-source models.
arXiv Detail & Related papers (2023-10-09T07:27:15Z) - Auto-FP: An Experimental Study of Automated Feature Preprocessing for
Tabular Data [10.740391800262685]
Feature preprocessing is a crucial step to ensure good model quality.
Due to the large search space, a brute-force solution is prohibitively expensive.
We extend a variety of HPO and NAS algorithms to solve the Auto-FP problem.
arXiv Detail & Related papers (2023-10-04T02:46:44Z) - Design Automation for Fast, Lightweight, and Effective Deep Learning
Models: A Survey [53.258091735278875]
This survey covers studies of design automation techniques for deep learning models targeting edge computing.
It offers an overview and comparison of key metrics that are used commonly to quantify the proficiency of models in terms of effectiveness, lightness, and computational costs.
The survey proceeds to cover three categories of the state-of-the-art of deep model design automation techniques.
arXiv Detail & Related papers (2022-08-22T12:12:43Z) - A Survey of Deep Reinforcement Learning Algorithms for Motion Planning
and Control of Autonomous Vehicles [2.7398985365813013]
We systematically summarize the current literature on studies that apply reinforcement learning (RL) to the motion planning and control of autonomous vehicles.
Many existing contributions can be attributed to the pipeline approach, which consists of many hand-crafted modules, each with a functionality selected for the ease of human interpretation.
This paper also presents a growing trend of work that falls into the end-to-end approach, which typically offers better performance and smaller system scales.
arXiv Detail & Related papers (2021-05-29T05:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.