Impact of a Deployed LLM Survey Creation Tool through the IS Success Model
- URL: http://arxiv.org/abs/2506.14809v1
- Date: Tue, 03 Jun 2025 22:36:36 GMT
- Title: Impact of a Deployed LLM Survey Creation Tool through the IS Success Model
- Authors: Peng Jiang, Vinicius Cezar Monteiro de Lira, Antonio Maiorino,
- Abstract summary: This paper presents the real-world deployment of an LLM-powered system designed to accelerate data collection while maintaining survey quality.<n>We evaluate the system using the DeLone and McLean IS Success Model to understand how generative AI can reshape a core IS method.
- Score: 6.522798387883815
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Surveys are a cornerstone of Information Systems (IS) research, yet creating high-quality surveys remains labor-intensive, requiring both domain expertise and methodological rigor. With the evolution of large language models (LLMs), new opportunities emerge to automate survey generation. This paper presents the real-world deployment of an LLM-powered system designed to accelerate data collection while maintaining survey quality. Deploying such systems in production introduces real-world complexity, including diverse user needs and quality control. We evaluate the system using the DeLone and McLean IS Success Model to understand how generative AI can reshape a core IS method. This study makes three key contributions. To our knowledge, this is the first application of the IS Success Model to a generative AI system for survey creation. In addition, we propose a hybrid evaluation framework combining automated and human assessments. Finally, we implement safeguards that mitigate post-deployment risks and support responsible integration into IS workflows.
Related papers
- LAM SIMULATOR: Advancing Data Generation for Large Action Model Training via Online Exploration and Trajectory Feedback [121.78866929908871]
Large Action Models (LAMs) for AI Agents offer incredible potential but face challenges due to the need for high-quality training data.<n>We present LAM SIMULATOR, a comprehensive framework designed for online exploration of agentic tasks with high-quality feedback.<n>Our framework features a dynamic task query generator, an extensive collection of tools, and an interactive environment where Large Language Model (LLM) Agents can call tools and receive real-time feedback.
arXiv Detail & Related papers (2025-06-02T22:36:02Z) - SurveyX: Academic Survey Automation via Large Language Models [22.597703631935463]
SurveyX is an efficient and organized system for automated survey generation.<n>It decomposes the survey composing process into two phases: Preparation and Generation.<n>It significantly enhances the efficacy of survey composition.
arXiv Detail & Related papers (2025-02-20T17:59:45Z) - MLGym: A New Framework and Benchmark for Advancing AI Research Agents [51.9387884953294]
We introduce Meta MLGym and MLGym-Bench, a new framework and benchmark for evaluating and developing large language models on AI research tasks.<n>This is the first Gym environment for machine learning (ML) tasks, enabling research on reinforcement learning (RL) algorithms for training such agents.<n>We evaluate a number of frontier large language models (LLMs) on our benchmarks such as Claude-3.5-Sonnet, Llama-3.1 405B, GPT-4o, o1-preview, and Gemini-1.5 Pro.
arXiv Detail & Related papers (2025-02-20T12:28:23Z) - Boost, Disentangle, and Customize: A Robust System2-to-System1 Pipeline for Code Generation [58.799397354312596]
Large language models (LLMs) have demonstrated remarkable capabilities in various domains, particularly in system 1 tasks.<n>Recent research on System2-to-System1 methods surge, exploring the System 2 reasoning knowledge via inference-time computation.<n>In this paper, we focus on code generation, which is a representative System 2 task, and identify two primary challenges.
arXiv Detail & Related papers (2025-02-18T03:20:50Z) - Deploying Large Language Models With Retrieval Augmented Generation [0.21485350418225244]
Retrieval Augmented Generation has emerged as a key approach for integrating knowledge from data sources outside of the large language model's training set.
We present insights from the development and field-testing of a pilot project that integrates LLMs with RAG for information retrieval.
arXiv Detail & Related papers (2024-11-07T22:11:51Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs)
We propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy.
arXiv Detail & Related papers (2024-09-16T09:06:44Z) - Game On: Towards Language Models as RL Experimenters [8.131696370980379]
We propose an agent architecture that automates parts of the common reinforcement learning experiment workflow.
We use a standard Gemini model, without additional fine-tuning, to provide a curriculum of skills to a language-conditioned Actor-Critic algorithm.
Additional examination of the ability of the system to build a growing library of skills, and to judge the progress of the training of those skills, also shows promising results.
arXiv Detail & Related papers (2024-09-05T10:38:16Z) - AutoSurvey: Large Language Models Can Automatically Write Surveys [77.0458309675818]
This paper introduces AutoSurvey, a speedy and well-organized methodology for automating the creation of comprehensive literature surveys.
Traditional survey paper creation faces challenges due to the vast volume and complexity of information.
Our contributions include a comprehensive solution to the survey problem, a reliable evaluation method, and experimental validation demonstrating AutoSurvey's effectiveness.
arXiv Detail & Related papers (2024-06-10T12:56:06Z) - System for systematic literature review using multiple AI agents:
Concept and an empirical evaluation [5.194208843843004]
We introduce a novel multi-AI agent model designed to fully automate the process of conducting Systematic Literature Reviews.
The model operates through a user-friendly interface where researchers input their topic.
It generates a search string used to retrieve relevant academic papers.
The model then autonomously summarizes the abstracts of these papers.
arXiv Detail & Related papers (2024-03-13T10:27:52Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
We present DS-Agent, a novel framework that harnesses large language models (LLMs) agent and case-based reasoning (CBR)
In the development stage, DS-Agent follows the CBR framework to structure an automatic iteration pipeline, which can flexibly capitalize on the expert knowledge from Kaggle.
In the deployment stage, DS-Agent implements a low-resource deployment stage with a simplified CBR paradigm, significantly reducing the demand on foundational capabilities of LLMs.
arXiv Detail & Related papers (2024-02-27T12:26:07Z) - A Study on Training and Developing Large Language Models for Behavior
Tree Generation [22.632022793663516]
This paper presents an innovative exploration of the application potential of large language models (LLM)
The core contribution of this paper lies in the design of a BT generation framework based on LLM.
In order to ensure the effectiveness and executability of the generated BTs, we emphasize the importance of data verification.
arXiv Detail & Related papers (2024-01-16T03:28:29Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
We propose a process model for the development of machine learning applications.
The first phase combines business and data understanding as data availability oftentimes affects the feasibility of the project.
The sixth phase covers state-of-the-art approaches for monitoring and maintenance of a machine learning applications.
arXiv Detail & Related papers (2020-03-11T08:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.