CLST: Cold-Start Mitigation in Knowledge Tracing by Aligning a Generative Language Model as a Students' Knowledge Tracer
- URL: http://arxiv.org/abs/2406.10296v2
- Date: Tue, 18 Jun 2024 00:53:50 GMT
- Title: CLST: Cold-Start Mitigation in Knowledge Tracing by Aligning a Generative Language Model as a Students' Knowledge Tracer
- Authors: Heeseok Jung, Jaesang Yoo, Yohaan Yoon, Yeonju Jang,
- Abstract summary: We propose cold-start mitigation in knowledge tracing by aligning a generative language model as a students' knowledge tracer (T)
We framed the KT task as a natural language processing task, wherein problem-solving data are expressed in natural language.
We evaluated the performance of the CLST in situations of data scarcity using various baseline models for comparison.
- Score: 1.6713666776851528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge tracing (KT), wherein students' problem-solving histories are used to estimate their current levels of knowledge, has attracted significant interest from researchers. However, most existing KT models were developed with an ID-based paradigm, which exhibits limitations in cold-start performance. These limitations can be mitigated by leveraging the vast quantities of external knowledge possessed by generative large language models (LLMs). In this study, we propose cold-start mitigation in knowledge tracing by aligning a generative language model as a students' knowledge tracer (CLST) as a framework that utilizes a generative LLM as a knowledge tracer. Upon collecting data from math, social studies, and science subjects, we framed the KT task as a natural language processing task, wherein problem-solving data are expressed in natural language, and fine-tuned the generative LLM using the formatted KT dataset. Subsequently, we evaluated the performance of the CLST in situations of data scarcity using various baseline models for comparison. The results indicate that the CLST significantly enhanced performance with a dataset of fewer than 100 students in terms of prediction, reliability, and cross-domain generalization.
Related papers
- Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data [54.934578742209716]
In real-world NLP applications, Large Language Models (LLMs) offer promising solutions due to their extensive training on vast datasets.
LLKD is an adaptive sample selection method that incorporates signals from both the teacher and student.
Our comprehensive experiments show that LLKD achieves superior performance across various datasets with higher data efficiency.
arXiv Detail & Related papers (2024-11-12T18:57:59Z) - Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
Large Language Models (LLMs) are increasingly recognized for their practical applications.
Retrieval-Augmented Generation (RAG) tackles this challenge and has shown a significant impact on LLMs.
By minimizing retrieval requests that yield neutral or harmful results, we can effectively reduce both time and computational costs.
arXiv Detail & Related papers (2024-11-09T15:12:28Z) - Beyond Right and Wrong: Mitigating Cold Start in Knowledge Tracing Using Large Language Model and Option Weight [0.14999444543328289]
Knowledge Tracing (KT) is vital in educational data mining, enabling personalized learning.
This study introduces the LOKT (Large Language Model Option-weighted Knowledge Tracing) model to address the cold start problem.
arXiv Detail & Related papers (2024-10-14T16:25:48Z) - Knowledge Graph Structure as Prompt: Improving Small Language Models Capabilities for Knowledge-based Causal Discovery [10.573861741540853]
KG Structure as Prompt is a novel approach for integrating structural information from a knowledge graph, such as common neighbor nodes and metapaths, into prompt-based learning.
Experimental results on three types of biomedical and open-domain datasets under few-shot settings demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-07-26T14:07:00Z) - SINKT: A Structure-Aware Inductive Knowledge Tracing Model with Large Language Model [64.92472567841105]
Knowledge Tracing (KT) aims to determine whether students will respond correctly to the next question.
Structure-aware Inductive Knowledge Tracing model with large language model (dubbed SINKT)
SINKT predicts the student's response to the target question by interacting with the student's knowledge state and the question representation.
arXiv Detail & Related papers (2024-07-01T12:44:52Z) - Language Model Can Do Knowledge Tracing: Simple but Effective Method to Integrate Language Model and Knowledge Tracing Task [3.1459398432526267]
This paper proposes Language model-based Knowledge Tracing (LKT), a novel framework that integrates pre-trained language models (PLMs) with Knowledge Tracing methods.
LKT effectively incorporates textual information and significantly outperforms previous KT models on large benchmark datasets.
arXiv Detail & Related papers (2024-06-05T03:26:59Z) - CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
This paper introduces the Contextual Language model for Accurate Imputation Method (CLAIM)
Unlike traditional imputation methods, CLAIM utilizes contextually relevant natural language descriptors to fill missing values.
Our evaluations across diverse datasets and missingness patterns reveal CLAIM's superior performance over existing imputation techniques.
arXiv Detail & Related papers (2024-05-28T00:08:29Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Temporal Knowledge Graph Forecasting Without Knowledge Using In-Context
Learning [23.971206470486468]
We present a framework that converts relevant historical facts into prompts and generates ranked predictions using token probabilities.
Surprisingly, we observe that LLMs, out-of-the-box, perform on par with state-of-the-art TKG models.
We also discover that using numerical indices instead of entity/relation names, does not significantly affect the performance.
arXiv Detail & Related papers (2023-05-17T23:50:28Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
We study the effectiveness of Feature Density (FD) using different linguistically-backed feature preprocessing methods.
We hypothesise that estimating dataset complexity allows for the reduction of the number of required experiments.
The difference in linguistic complexity of datasets allows us to additionally discuss the efficacy of linguistically-backed word preprocessing.
arXiv Detail & Related papers (2021-11-02T15:48:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.