Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data
- URL: http://arxiv.org/abs/2411.08028v1
- Date: Tue, 12 Nov 2024 18:57:59 GMT
- Title: Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data
- Authors: Juanhui Li, Sreyashi Nag, Hui Liu, Xianfeng Tang, Sheikh Sarwar, Limeng Cui, Hansu Gu, Suhang Wang, Qi He, Jiliang Tang,
- Abstract summary: In real-world NLP applications, Large Language Models (LLMs) offer promising solutions due to their extensive training on vast datasets.
LLKD is an adaptive sample selection method that incorporates signals from both the teacher and student.
Our comprehensive experiments show that LLKD achieves superior performance across various datasets with higher data efficiency.
- Score: 54.934578742209716
- License:
- Abstract: In real-world NLP applications, Large Language Models (LLMs) offer promising solutions due to their extensive training on vast datasets. However, the large size and high computation demands of LLMs limit their practicality in many applications, especially when further fine-tuning is required. To address these limitations, smaller models are typically preferred for deployment. However, their training is hindered by the scarcity of labeled data. In contrast, unlabeled data is often readily which can be leveraged by using LLMs to generate pseudo-labels for training smaller models. This enables the smaller models (student) to acquire knowledge from LLMs(teacher) while reducing computational costs. This process introduces challenges, such as potential noisy pseudo-labels. Selecting high-quality and informative data is therefore critical to enhance model performance while improving the efficiency of data utilization. To address this, we propose LLKD that enables Learning with Less computational resources and less data for Knowledge Distillation from LLMs. LLKD is an adaptive sample selection method that incorporates signals from both the teacher and student. Specifically, it prioritizes samples where the teacher demonstrates high confidence in its labeling, indicating reliable labels, and where the student exhibits a high information need, identifying challenging samples that require further learning. Our comprehensive experiments show that LLKD achieves superior performance across various datasets with higher data efficiency.
Related papers
- Are LLMs Better than Reported? Detecting Label Errors and Mitigating Their Effect on Model Performance [21.926934384262594]
Large language models (LLMs) offer new opportunities to enhance the annotation process.
We compare expert, crowd-sourced, and our LLM-based annotations in terms of agreement, label quality, and efficiency.
Our findings reveal a substantial number of label errors, which, when corrected, induce a significant upward shift in reported model performance.
arXiv Detail & Related papers (2024-10-24T16:27:03Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
Large language models (LLMs) often necessitate extensive labeled datasets and training compute to achieve impressive performance across downstream tasks.
This paper explores a self-training paradigm, where the LLM autonomously curates its own labels and selectively trains on unknown data samples.
Empirical evaluations demonstrate significant improvements in reducing hallucination in generation across multiple subjects.
arXiv Detail & Related papers (2024-06-17T07:25:09Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Making Large Language Models Better Data Creators [22.0882632635255]
Large language models (LLMs) have advanced the state-of-the-art in NLP significantly.
deploying them for downstream applications is still challenging due to cost, responsiveness, control, or concerns around privacy and security.
We propose a unified data creation pipeline that requires only a single format example.
arXiv Detail & Related papers (2023-10-31T01:08:34Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Self-Tuning for Data-Efficient Deep Learning [75.34320911480008]
Self-Tuning is a novel approach to enable data-efficient deep learning.
It unifies the exploration of labeled and unlabeled data and the transfer of a pre-trained model.
It outperforms its SSL and TL counterparts on five tasks by sharp margins.
arXiv Detail & Related papers (2021-02-25T14:56:19Z) - Pseudo-Representation Labeling Semi-Supervised Learning [0.0]
In recent years, semi-supervised learning has shown tremendous success in leveraging unlabeled data to improve the performance of deep learning models.
This work proposes the pseudo-representation labeling, a simple and flexible framework that utilizes pseudo-labeling techniques to iteratively label a small amount of unlabeled data and use them as training data.
Compared with the existing approaches, the pseudo-representation labeling is more intuitive and can effectively solve practical problems in the real world.
arXiv Detail & Related papers (2020-05-31T03:55:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.