Gender Representation in TV and Radio: Automatic Information Extraction methods versus Manual Analyses
- URL: http://arxiv.org/abs/2406.10316v1
- Date: Fri, 14 Jun 2024 16:05:43 GMT
- Title: Gender Representation in TV and Radio: Automatic Information Extraction methods versus Manual Analyses
- Authors: David Doukhan, Lena Dodson, Manon Conan, Valentin Pelloin, Aurélien Clamouse, Mélina Lepape, Géraldine Van Hille, Cécile Méadel, Marlène Coulomb-Gully,
- Abstract summary: This study investigates the relationship between automatic information extraction descriptors and manual analyses to describe gender representation disparities in TV and Radio.
Findings reveal systemic gender imbalances, with women underrepresented compared to men across all descriptors.
- Score: 1.1708479580628022
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study investigates the relationship between automatic information extraction descriptors and manual analyses to describe gender representation disparities in TV and Radio. Automatic descriptors, including speech time, facial categorization and speech transcriptions are compared with channel reports on a vast 32,000-hour corpus of French broadcasts from 2023. Findings reveal systemic gender imbalances, with women underrepresented compared to men across all descriptors. Notably, manual channel reports show higher women's presence than automatic estimates and references to women are lower than their speech time. Descriptors share common dynamics during high and low audiences, war coverage, or private versus public channels. While women are more visible than audible in French TV, this trend is inverted in news with unseen journalists depicting male protagonists. A statistical test shows 3 main effects influencing references to women: program category, channel and speaker gender.
Related papers
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - Automatic Classification of News Subjects in Broadcast News: Application to a Gender Bias Representation Analysis [1.4100823284870105]
This paper introduces a computational framework designed to delineate gender distribution biases in topics covered by French TV and radio news.
We transcribe a dataset of 11.7k hours, broadcasted in 2023 on 21 French channels.
We show that women are notably underrepresented in subjects such as sports, politics and conflicts.
arXiv Detail & Related papers (2024-07-19T10:15:45Z) - The Impact of Debiasing on the Performance of Language Models in
Downstream Tasks is Underestimated [70.23064111640132]
We compare the impact of debiasing on performance across multiple downstream tasks using a wide-range of benchmark datasets.
Experiments show that the effects of debiasing are consistently emphunderestimated across all tasks.
arXiv Detail & Related papers (2023-09-16T20:25:34Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGender is a novel dataset for benchmarking gender bias in vision-language models.
We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas.
We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes.
arXiv Detail & Related papers (2023-06-21T17:59:51Z) - Auditing Gender Presentation Differences in Text-to-Image Models [54.16959473093973]
We study how gender is presented differently in text-to-image models.
By probing gender indicators in the input text, we quantify the frequency differences of presentation-centric attributes.
We propose an automatic method to estimate such differences.
arXiv Detail & Related papers (2023-02-07T18:52:22Z) - Overlapped speech and gender detection with WavLM pre-trained features [6.054285771277486]
This article focuses on overlapped speech and gender detection in order to study interactions between women and men in French audiovisual media.
We propose to use WavLM model which has the advantage of being pre-trained on a huge amount of speech data.
A neural GD is trained with WavLM inputs on a gender balanced subset of the French broadcast news ALLIES data, and obtains an accuracy of 97.9%.
arXiv Detail & Related papers (2022-09-09T08:00:47Z) - GenderedNews: Une approche computationnelle des \'ecarts de
repr\'esentation des genres dans la presse fran\c{c}aise [0.0]
We present it GenderedNews (urlhttps://gendered-news.imag.fr), an online dashboard which gives weekly measures of gender imbalance in French online press.
We use Natural Language Processing (NLP) methods to quantify gender inequalities in the media.
We describe the data collected daily (seven main titles of French online news media) and the methodology behind our metrics.
arXiv Detail & Related papers (2022-02-11T15:16:49Z) - Gender bias in magazines oriented to men and women: a computational
approach [58.720142291102135]
We compare the content of a women-oriented magazine with that of a men-oriented one, both produced by the same editorial group over a decade.
With Topic Modelling techniques we identify the main themes discussed in the magazines and quantify how much the presence of these topics differs between magazines over time.
Our results show that the frequency of appearance of the topics Family, Business and Women as sex objects, present an initial bias that tends to disappear over time.
arXiv Detail & Related papers (2020-11-24T14:02:49Z) - Computational appraisal of gender representativeness in popular movies [0.0]
This article illustrates how automated computational methods may be used to scale up such empirical observations.
We specifically apply a face and gender detection algorithm on a broad set of popular movies spanning more than three decades to carry out a large-scale appraisal of the on-screen presence of women and men.
arXiv Detail & Related papers (2020-09-16T13:15:11Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.