Disentangled Hyperbolic Representation Learning for Heterogeneous Graphs
- URL: http://arxiv.org/abs/2406.10367v1
- Date: Fri, 14 Jun 2024 18:50:47 GMT
- Title: Disentangled Hyperbolic Representation Learning for Heterogeneous Graphs
- Authors: Qijie Bai, Changli Nie, Haiwei Zhang, Zhicheng Dou, Xiaojie Yuan,
- Abstract summary: We propose $textDis-H2textGCN$, a Disentangled Hyperbolic Heterogeneous Graph Convolutional Network.
We evaluate our proposed $textDis-H2textGCN$ on five real-world heterogeneous graph datasets.
- Score: 29.065531121422204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous graphs have attracted a lot of research interests recently due to the success for representing complex real-world systems. However, existing methods have two pain points in embedding them into low-dimensional spaces: the mixing of structural and semantic information, and the distributional mismatch between data and embedding spaces. These two challenges require representation methods to consider the global and partial data distributions while unmixing the information. Therefore, in this paper, we propose $\text{Dis-H}^2\text{GCN}$, a Disentangled Hyperbolic Heterogeneous Graph Convolutional Network. On the one hand, we leverage the mutual information minimization and discrimination maximization constraints to disentangle the semantic features from comprehensively learned representations by independent message propagation for each edge type, away from the pure structural features. On the other hand, the entire model is constructed upon the hyperbolic geometry to narrow the gap between data distributions and representing spaces. We evaluate our proposed $\text{Dis-H}^2\text{GCN}$ on five real-world heterogeneous graph datasets across two downstream tasks: node classification and link prediction. The results demonstrate its superiority over state-of-the-art methods, showcasing the effectiveness of our method in disentangling and representing heterogeneous graph data in hyperbolic spaces.
Related papers
- When Heterophily Meets Heterogeneous Graphs: Latent Graphs Guided Unsupervised Representation Learning [6.2167203720326025]
Unsupervised heterogeneous graph representation learning (UHGRL) has gained increasing attention due to its significance in handling practical graphs without labels.
We define semantic heterophily and propose an innovative framework called Latent Graphs Guided Unsupervised Representation Learning (LatGRL) to handle this problem.
arXiv Detail & Related papers (2024-09-01T10:25:06Z) - Hyperbolic Heterogeneous Graph Attention Networks [3.0165549581582454]
Most previous heterogeneous graph embedding models represent elements in a heterogeneous graph as vector representations in a low-dimensional Euclidean space.
We propose Hyperbolic Heterogeneous Graph Attention Networks (HHGAT) that learn vector representations in hyperbolic spaces with meta-path instances.
We conducted experiments on three real-world heterogeneous graph datasets, demonstrating that HHGAT outperforms state-of-the-art heterogeneous graph embedding models in node classification and clustering tasks.
arXiv Detail & Related papers (2024-04-15T04:45:49Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties.
Due to the selection bias of training and testing data, distribution deviation is widespread.
We propose OOD calibration to measure the distribution deviation of virtual samples.
arXiv Detail & Related papers (2023-08-16T13:10:27Z) - Metric Distribution to Vector: Constructing Data Representation via
Broad-Scale Discrepancies [15.40538348604094]
We present a novel embedding strategy named $mathbfMetricDistribution2vec$ to extract distribution characteristics into the vectorial representation for each data.
We demonstrate the application and effectiveness of our representation method in the supervised prediction tasks on extensive real-world structural graph datasets.
arXiv Detail & Related papers (2022-10-02T03:18:30Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Geometric Graph Representation Learning via Maximizing Rate Reduction [73.6044873825311]
Learning node representations benefits various downstream tasks in graph analysis such as community detection and node classification.
We propose Geometric Graph Representation Learning (G2R) to learn node representations in an unsupervised manner.
G2R maps nodes in distinct groups into different subspaces, while each subspace is compact and different subspaces are dispersed.
arXiv Detail & Related papers (2022-02-13T07:46:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.