When Heterophily Meets Heterogeneous Graphs: Latent Graphs Guided Unsupervised Representation Learning
- URL: http://arxiv.org/abs/2409.00687v1
- Date: Sun, 1 Sep 2024 10:25:06 GMT
- Title: When Heterophily Meets Heterogeneous Graphs: Latent Graphs Guided Unsupervised Representation Learning
- Authors: Zhixiang Shen, Zhao Kang,
- Abstract summary: Unsupervised heterogeneous graph representation learning (UHGRL) has gained increasing attention due to its significance in handling practical graphs without labels.
We define semantic heterophily and propose an innovative framework called Latent Graphs Guided Unsupervised Representation Learning (LatGRL) to handle this problem.
- Score: 6.2167203720326025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised heterogeneous graph representation learning (UHGRL) has gained increasing attention due to its significance in handling practical graphs without labels. However, heterophily has been largely ignored, despite its ubiquitous presence in real-world heterogeneous graphs. In this paper, we define semantic heterophily and propose an innovative framework called Latent Graphs Guided Unsupervised Representation Learning (LatGRL) to handle this problem. First, we develop a similarity mining method that couples global structures and attributes, enabling the construction of fine-grained homophilic and heterophilic latent graphs to guide the representation learning. Moreover, we propose an adaptive dual-frequency semantic fusion mechanism to address the problem of node-level semantic heterophily. To cope with the massive scale of real-world data, we further design a scalable implementation. Extensive experiments on benchmark datasets validate the effectiveness and efficiency of our proposed framework. The source code and datasets have been made available at https://github.com/zxlearningdeep/LatGRL.
Related papers
- Against Multifaceted Graph Heterogeneity via Asymmetric Federated Prompt Learning [5.813912301780917]
We propose a Federated Graph Prompt Learning (FedGPL) framework to efficiently enable prompt-based asymmetric graph knowledge transfer.
We conduct theoretical analyses and extensive experiments to demonstrate the significant accuracy and efficiency effectiveness of FedGPL.
arXiv Detail & Related papers (2024-11-04T11:42:25Z) - The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - HiGPT: Heterogeneous Graph Language Model [27.390123898556805]
Heterogeneous graph learning aims to capture complex relationships and diverse semantics among entities in a heterogeneous graph.
Existing frameworks for heterogeneous graph learning have limitations in generalizing across diverse heterogeneous graph datasets.
We propose HiGPT, a general large graph model with Heterogeneous graph instruction-tuning paradigm.
arXiv Detail & Related papers (2024-02-25T08:07:22Z) - Breaking the Entanglement of Homophily and Heterophily in
Semi-supervised Node Classification [25.831508778029097]
We introduce AMUD, which quantifies the relationship between node profiles and topology from a statistical perspective.
We also propose ADPA as a new directed graph learning paradigm for AMUD.
arXiv Detail & Related papers (2023-12-07T07:54:11Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - Single-Pass Contrastive Learning Can Work for Both Homophilic and
Heterophilic Graph [60.28340453547902]
Graph contrastive learning (GCL) techniques typically require two forward passes for a single instance to construct the contrastive loss.
Existing GCL approaches fail to provide strong performance guarantees.
We implement the Single-Pass Graph Contrastive Learning method (SP-GCL)
Empirically, the features learned by the SP-GCL can match or outperform existing strong baselines with significantly less computational overhead.
arXiv Detail & Related papers (2022-11-20T07:18:56Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.