論文の概要: Determination of the Number of Topics Intrinsically: Is It Possible?
- arxiv url: http://arxiv.org/abs/2406.10402v1
- Date: Fri, 14 Jun 2024 20:07:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 00:42:24.873612
- Title: Determination of the Number of Topics Intrinsically: Is It Possible?
- Title(参考訳): 本質的なトピック数の決定:それは可能か?
- Authors: Victor Bulatov, Vasiliy Alekseev, Konstantin Vorontsov,
- Abstract要約: 本研究では,複数のトピックモデルに適用した各種手法の性能について,公開コーパスを用いて検討した。
トピックの数は、特定のコーパスの絶対的な性質とは対照的に、メソッドとモデルに依存した量であることが示される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The number of topics might be the most important parameter of a topic model. The topic modelling community has developed a set of various procedures to estimate the number of topics in a dataset, but there has not yet been a sufficiently complete comparison of existing practices. This study attempts to partially fill this gap by investigating the performance of various methods applied to several topic models on a number of publicly available corpora. Further analysis demonstrates that intrinsic methods are far from being reliable and accurate tools. The number of topics is shown to be a method- and a model-dependent quantity, as opposed to being an absolute property of a particular corpus. We conclude that other methods for dealing with this problem should be developed and suggest some promising directions for further research.
- Abstract(参考訳): トピックの数はトピックモデルの最も重要なパラメータかもしれない。
トピックモデリングコミュニティは、データセット内のトピック数を推定する様々な手順のセットを開発したが、既存のプラクティスの十分な完全な比較は行われていない。
本研究は,いくつかのトピックモデルに適用した様々な手法の性能を,公開されているコーパスで検証することにより,このギャップを部分的に埋める試みである。
さらなる分析により、本質的な手法は信頼性と正確性には程遠いことが示されている。
トピックの数は、特定のコーパスの絶対的な性質とは対照的に、メソッドとモデルに依存した量であることが示される。
我々は,この問題に対処する他の方法を開発し,今後の研究に向けて有望な方向性を提案する。
関連論文リスト
- Iterative Improvement of an Additively Regularized Topic Model [0.0]
本稿では,トピックモデルの反復的学習法を提案する。
いくつかの自然言語テキストの収集実験により、提案したITARモデルは、他の人気のあるトピックモデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T18:22:12Z) - An Iterative Approach to Topic Modelling [0.0]
本稿では,プロセス完了時のトピックの完全性の感覚を生じさせるトピックモデリングを反復的に行うことを提案する。
本稿では,クラスタリング比較において選択した3つの尺度のうちの1つを用いて,さらに改善できないトピックの集合に,モデルプロセスが反復的に適用可能であることを実証する。
論文 参考訳(メタデータ) (2024-07-25T09:26:07Z) - Interactive Topic Models with Optimal Transport [75.26555710661908]
ラベル名監視型トピックモデリングのためのアプローチとして,EdTMを提案する。
EdTMは、LM/LLMベースのドキュメントトピック親和性を活用しながら、代入問題としてのトピックモデリングをモデル化する。
論文 参考訳(メタデータ) (2024-06-28T13:57:27Z) - TopicAdapt- An Inter-Corpora Topics Adaptation Approach [27.450275637652418]
本稿では、関連するソースコーパスから関連するトピックを適応し、ソースコーパスに存在しないターゲットコーパスに新しいトピックを発見できるトピックモデルTopicAdaptを提案する。
多様なドメインからの複数のデータセットに対する実験は、最先端のトピックモデルに対して提案されたモデルの優位性を示している。
論文 参考訳(メタデータ) (2023-10-08T02:56:44Z) - Topics in the Haystack: Extracting and Evaluating Topics beyond
Coherence [0.0]
本稿では,文と文書のテーマを深く理解する手法を提案する。
これにより、一般的な単語やネオロジズムを含む潜在トピックを検出することができる。
本稿では, 侵入者の単語の人間識別と相関係数を示し, 単語侵入作業において, ほぼ人間レベルの結果を得る。
論文 参考訳(メタデータ) (2023-03-30T12:24:25Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
数発のセグメンテーションのための確率的潜在変数フレームワークである注意型プロトタイプ推論(API)を提案する。
我々は各オブジェクトカテゴリのプロトタイプを表現するためにグローバル潜在変数を定義し、確率分布としてモデル化する。
我々は4つのベンチマークで広範な実験を行い、提案手法は最先端のプロトタイプベースの手法よりも、少なくとも競争力があり、しばしば優れた性能が得られる。
論文 参考訳(メタデータ) (2021-05-14T06:58:44Z) - Evaluating the Disentanglement of Deep Generative Models through
Manifold Topology [66.06153115971732]
本稿では,生成モデルのみを用いた乱れの定量化手法を提案する。
複数のデータセットにまたがるいくつかの最先端モデルを実証的に評価する。
論文 参考訳(メタデータ) (2020-06-05T20:54:11Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
多視点問題は潜在変数モデルに直面することができる。
高次元問題と非線形問題は伝統的にカーネルメソッドによって扱われる。
両アプローチを単一モデルにマージすることを提案する。
論文 参考訳(メタデータ) (2020-06-01T14:25:38Z) - Marginal likelihood computation for model selection and hypothesis
testing: an extensive review [66.37504201165159]
この記事では、このトピックの最先端に関する総合的な研究について紹介する。
さまざまなテクニックの制限、メリット、コネクション、差異を強調します。
また、不適切な事前利用の問題や解決法についても述べる。
論文 参考訳(メタデータ) (2020-05-17T18:31:58Z) - Keyword Assisted Topic Models [0.0]
少数のキーワードを提供することで,話題モデルの計測性能を大幅に向上させることができることを示す。
KeyATMは、より解釈可能な結果を提供し、文書分類性能が向上し、標準トピックモデルよりもトピックの数に敏感でない。
論文 参考訳(メタデータ) (2020-04-13T14:35:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。