論文の概要: MALLM-GAN: Multi-Agent Large Language Model as Generative Adversarial Network for Synthesizing Tabular Data
- arxiv url: http://arxiv.org/abs/2406.10521v3
- Date: Wed, 02 Oct 2024 23:27:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-04 23:30:49.209672
- Title: MALLM-GAN: Multi-Agent Large Language Model as Generative Adversarial Network for Synthesizing Tabular Data
- Title(参考訳): MALLM-GAN:多言語大言語モデル
- Authors: Yaobin Ling, Xiaoqian Jiang, Yejin Kim,
- Abstract要約: 大規模言語モデル(LLM)を用いた合成(語彙)データを生成するフレームワークを提案する。
提案手法は, サンプルサイズが小さい一般的なシナリオにおいて, 合成データ生成の品質を著しく向上させる。
以上の結果から,本モデルは下流タスクにおける高品質な合成データを生成する上で,実際のデータのプライバシを維持しつつ,いくつかの最先端モデルよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 10.217822818544475
- License:
- Abstract: In the era of big data, access to abundant data is crucial for driving research forward. However, such data is often inaccessible due to privacy concerns or high costs, particularly in healthcare domain. Generating synthetic (tabular) data can address this, but existing models typically require substantial amounts of data to train effectively, contradicting our objective to solve data scarcity. To address this challenge, we propose a novel framework to generate synthetic tabular data, powered by large language models (LLMs) that emulates the architecture of a Generative Adversarial Network (GAN). By incorporating data generation process as contextual information and utilizing LLM as the optimizer, our approach significantly enhance the quality of synthetic data generation in common scenarios with small sample sizes. Our experimental results on public and private datasets demonstrate that our model outperforms several state-of-art models regarding generating higher quality synthetic data for downstream tasks while keeping privacy of the real data.
- Abstract(参考訳): ビッグデータの時代において、豊富なデータへのアクセスは研究を進める上で非常に重要です。
しかし、プライバシー上の懸念や高コストのため、特に医療領域では、そのようなデータはアクセスできないことが多い。
合成(タブラル)データの生成はこれに対処できるが、既存のモデルでは、データ不足を解決するという私たちの目的に反して、効果的にトレーニングするために大量のデータを必要とするのが普通である。
この課題に対処するために,GAN(Generative Adversarial Network)のアーキテクチャをエミュレートする大規模言語モデル(LLM)を利用した合成表データを生成する新しいフレームワークを提案する。
筆者らは,データ生成プロセスを文脈情報として取り入れ,LLMを最適化手法として活用することにより,サンプルサイズが小さい一般的なシナリオにおいて,合成データ生成の品質を著しく向上させる。
公開およびプライベートデータセットに対する実験結果から,実データのプライバシーを維持しつつ,下流タスクのための高品質な合成データの生成に関して,我々のモデルがいくつかの最先端モデルより優れていることが示された。
関連論文リスト
- Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
本稿では, 複雑度の異なる3つの生成モデルを用いて, 悪意ネットワークトラフィックを合成する手法を提案する。
提案手法は,数値データをテキストに変換し,言語モデリングタスクとして再フレーミングする。
提案手法は,高忠実度合成データの生成において,最先端の生成モデルを超えている。
論文 参考訳(メタデータ) (2024-11-04T09:51:10Z) - Little Giants: Synthesizing High-Quality Embedding Data at Scale [71.352883755806]
SPEEDは,オープンソースの小型モデルと協調して大規模な埋め込みデータを効率的に生成するフレームワークである。
SPEEDはGPT API呼び出しの1/10未満しか使用せず、両者が合成データのみに基づいてトレーニングされている場合、最先端の埋め込みモデルE5_mistralよりも優れている。
論文 参考訳(メタデータ) (2024-10-24T10:47:30Z) - Data Generation Using Large Language Models for Text Classification: An Empirical Case Study [15.447491854250227]
我々は、合成データに基づいて訓練された自然言語理解(NLU)モデルを用いて、異なる世代からの合成データの品質を評価する。
この研究は、これらの要因の影響を実証分析し、データ生成の実践を改善するためのレコメンデーションを提供する。
論文 参考訳(メタデータ) (2024-06-27T21:41:43Z) - Differentially Private Tabular Data Synthesis using Large Language Models [6.6376578496141585]
本稿ではDP-LLMTGenについて紹介する。
DP-LLMTGenは、2段階の微調整手順を用いて、センシティブなデータセットをモデル化する。
微調整LDMをサンプリングすることで合成データを生成する。
論文 参考訳(メタデータ) (2024-06-03T15:43:57Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - CasTGAN: Cascaded Generative Adversarial Network for Realistic Tabular
Data Synthesis [0.4999814847776097]
近年,GAN(Generative Adversarial Network)が注目されている。
合成データの妥当性と基礎となるプライバシーに関する懸念は、十分に対処されていない主要な課題を表している。
論文 参考訳(メタデータ) (2023-07-01T16:52:18Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
時系列データは、研究者と産業組織間のデータの共有を妨げるため、しばしば不足または非常に敏感である。
本稿では,合成時系列の生成モデリングのためのオープンソースフレームワークである時系列生成モデリング(TSGM)を紹介する。
論文 参考訳(メタデータ) (2023-05-19T10:11:21Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
合成データは、機械学習の世界において支配的な力となり、データセットを個々のニーズに合わせて調整できる未来を約束する。
合成データのより広範な妥当性と適用のために,コミュニティが克服すべき根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-04-07T16:38:40Z) - Differentially Private Synthetic Medical Data Generation using
Convolutional GANs [7.2372051099165065]
R'enyiの差分プライバシーを用いた合成データ生成のための差分プライベートフレームワークを開発する。
提案手法は, 畳み込み自己エンコーダと畳み込み生成対向ネットワークを利用して, 生成した合成データの重要な特性をある程度保存する。
私たちのモデルは、同じプライバシー予算の下で既存の最新モデルを上回ることを実証します。
論文 参考訳(メタデータ) (2020-12-22T01:03:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。