Long-Range Entangled Quantum Noise Radar Over Order of Kilometer
- URL: http://arxiv.org/abs/2406.10533v3
- Date: Tue, 10 Dec 2024 05:31:26 GMT
- Title: Long-Range Entangled Quantum Noise Radar Over Order of Kilometer
- Authors: H. Allahverdi, Ali Motazedifard,
- Abstract summary: In this paper, an explicit expression for the maximum detection range of an entangled quantum two-mode squeezed (QTMS) radar has been derived.
We show that one can though a QTMS radar as a traditional radar with a reduced threshold signal-to-noise ratio.
It is possible to implement a QTMS radar with maximum detection range up to the order of $2mathrmkm$, which is suitable for recognizing small unmanned aerial vehicles in urban distances.
- Score: 0.0
- License:
- Abstract: In this paper, an explicit expression for the maximum detection range of an entangled quantum two-mode squeezed (QTMS) radar, in which a two-mode squeezed vacuum state of microwave electromagnetic fields is used, have been derived by considering both the quantum properties of the entangled microwave fields and radar parameters. By comparing this equation with that of traditional radars, we showed that one can though a QTMS radar as a traditional radar with a reduced threshold signal-to-noise ratio. By discussing the current limitations, it has been shown that the critical parameter to have both simultaneous quantum advantage and substantial radar range is increasing the bandwidth of the generated output signal in the quantum entangled source. It has been shown that by considering the current feasible system parameters, it is possible to implement a QTMS radar with maximum detection range up to the order of $2\mathrm{km}$, which is suitable for recognizing small unmanned aerial vehicles in urban distances. Moreover, based on the false alarm rate, we introduce two classes of early alarm and track QTMS radars. The present approach can be generalized to other quantum radars with different types of quantum sources like electro-opto-mechanical sources, and also may shed new light on investigating the quantum radar system toward practical applications. Finally, we have discussed the potential outlooks to improve and develop the quantum entangled radar systems to be practical from the engineering point of view.
Related papers
- Rydberg Atomic Quantum Receivers for Multi-Target DOA Estimation [77.32323151235285]
Rydberg atomic quantum receivers (RAQRs) have emerged as a promising solution to classical wireless communication and sensing.
We first conceive a Rydberg atomic quantum uniform linear array (RAQ-ULA) aided receiver for multi-target detection.
We then propose the Rydberg atomic quantum estimation of signal parameters by designing a rotational invariance based technique termed as RAQ-ESPRIT.
arXiv Detail & Related papers (2025-01-06T07:42:23Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - On Target Detection by Quantum Radar (Preprint) [1.0878040851637998]
Noise Radar and Quantum Radar exploit randomness of transmitted signal to enhance radar covertness and to reduce mutual interference.
Various Quantum Radar proposals cannot lead to any useful result, especially, but not limited to, the alleged detection of stealth targets.
arXiv Detail & Related papers (2024-02-29T18:58:40Z) - Advances in Quantum Radar and Quantum LiDAR [0.0]
Quantum sensing is revolutionizing precision and sensitivity across diverse domains.
Its impact is now stretching into radar and LiDAR applications, giving rise to the concept of quantum radar.
This review offers valuable insights into the current state of quantum radar.
arXiv Detail & Related papers (2023-10-11T05:18:33Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - A Study on Quantum Radar Technology Developments and Design
Consideration for its integration [0.0]
Quantum radar systems supported by quantum measurement can fulfill not only conventional target detection and recognition tasks but are also capable of detecting and identifying the RF stealth platform and weapons systems.
The concept of a quantum radar has been proposed which utilizes quantum states of photons to establish information on a target at a distance.
arXiv Detail & Related papers (2022-05-25T06:53:23Z) - Engineered Josephson Parametric Amplifier in quantum two-modes squeezed
radar [0.0]
Josephson parametric amplifier (JPA) engineering is a significant component in the quantum two-mode squeezed radar (QTMS)
In this study, we apply quantum theory to a research domain focusing the design of QTMS radar.
arXiv Detail & Related papers (2022-05-12T20:11:22Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Microwave Quantum Radar using a Josephson Traveling Wave Parametric
Amplifier [3.150310177478277]
A microwave quantum radar setup based on quantum illumination protocol and using a Josephson Traveling Wave Parametric Amplifier (JTWPA) is proposed.
Measurement results of the developed JTWPA, pumped at 12 GHz, show an ultrawide bandwidth equal to 10 GHz at X-band making our MQR a promising candidate for the detection of stealth objects.
arXiv Detail & Related papers (2021-11-05T11:30:32Z) - Mid-infrared homodyne balanced detector for quantum light
characterization [52.77024349608834]
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared.
We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
arXiv Detail & Related papers (2021-03-16T11:08:50Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.