A Finite Difference Informed Graph Network for Solving Steady-State Incompressible Flows on Block-Structured Grids
- URL: http://arxiv.org/abs/2406.10534v1
- Date: Sat, 15 Jun 2024 07:30:40 GMT
- Title: A Finite Difference Informed Graph Network for Solving Steady-State Incompressible Flows on Block-Structured Grids
- Authors: Yiye Zou, Tianyu Li, Shufan Zou, Jingyu Wang, Laiping Zhang, Xiaogang Deng,
- Abstract summary: We propose a graph convolution-based finite difference method (GC-FDM) to train GNs in a physics-constrained manner.
Our goal is to solve steady incompressible Navier-Stokes equations for flows around a backward-facing step, a circular cylinder, and double cylinders.
We demonstrate improved training efficiency and accuracy, achieving a minimum relative error of $10-3$ in velocity field prediction.
- Score: 12.402245124816359
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, advancements in deep learning have enabled physics-informed neural networks (PINNs) to solve partial differential equations (PDEs). Numerical differentiation (ND) using the finite difference (FD) method is efficient in physics-constrained designs, even in parameterized settings, often employing body-fitted block-structured grids for complex flow cases. However, convolution operators in CNNs for finite differences are typically limited to single-block grids. To address this, we use graphs and graph networks (GNs) to learn flow representations across multi-block structured grids. We propose a graph convolution-based finite difference method (GC-FDM) to train GNs in a physics-constrained manner, enabling differentiable finite difference operations on graph unstructured outputs. Our goal is to solve parametric steady incompressible Navier-Stokes equations for flows around a backward-facing step, a circular cylinder, and double cylinders, using multi-block structured grids. Comparing our method to a CFD solver under various boundary conditions, we demonstrate improved training efficiency and accuracy, achieving a minimum relative error of $10^{-3}$ in velocity field prediction and a 20\% reduction in training cost compared to PINNs.
Related papers
- Factorized Implicit Global Convolution for Automotive Computational Fluid Dynamics Prediction [52.32698071488864]
We propose Factorized Implicit Global Convolution (FIGConv), a novel architecture that efficiently solves CFD problems for very large 3D meshes.
FIGConv achieves quadratic complexity $O(N2)$, a significant improvement over existing 3D neural CFD models.
We validate our approach on the industry-standard Ahmed body dataset and the large-scale DrivAerNet dataset.
arXiv Detail & Related papers (2025-02-06T18:57:57Z) - Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
Noise perturbations often corrupt 3-D point clouds, hindering downstream tasks such as surface reconstruction, rendering, and further processing.
This paper introduces finegranularity dynamic graph convolutional networks called GDGCN, a novel approach to denoising in 3-D point clouds.
arXiv Detail & Related papers (2024-11-21T14:19:32Z) - Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations [1.1932047172700866]
This paper presents a methodology to learn surrogate models of steady state fluid dynamics simulations on meshed domains.
The proposed models can be applied directly to unstructured domains for different flow conditions.
Remarkably, the method can perform inference five order of magnitude faster than the high fidelity solver on the RANS transonic airfoil dataset.
arXiv Detail & Related papers (2024-07-29T11:48:44Z) - Solving the Discretised Multiphase Flow Equations with Interface
Capturing on Structured Grids Using Machine Learning Libraries [0.6299766708197884]
This paper solves the discretised multiphase flow equations using tools and methods from machine-learning libraries.
For the first time, finite element discretisations of multiphase flows can be solved using an approach based on (untrained) convolutional neural networks.
arXiv Detail & Related papers (2024-01-12T18:42:42Z) - Identification of vortex in unstructured mesh with graph neural networks [0.0]
We present a Graph Neural Network (GNN) based model with U-Net architecture to identify the vortex in CFD results on unstructured meshes.
A vortex auto-labeling method is proposed to label vortex regions in 2D CFD meshes.
arXiv Detail & Related papers (2023-11-11T12:10:16Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
We propose a novel framework based on graph neural networks (GNNs) and radial basis function finite difference (RBF-FD)
RBF-FD is used to construct a high-precision difference format of the differential equations to guide model training.
We illustrate the generalizability, accuracy, and efficiency of the proposed algorithms on different PDE parameters.
arXiv Detail & Related papers (2022-12-06T10:08:02Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids.
A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids.
We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes.
arXiv Detail & Related papers (2022-07-12T17:07:46Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
In this work, we make use of deep residual neural networks to solve the non-stationary ODE (flow equation) based on a Euler's discretization scheme.
We illustrate these ideas on diverse registration problems of 3D shapes under complex topology-preserving transformations.
arXiv Detail & Related papers (2021-02-16T04:07:13Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
Network learns end-to-end mapping between spatial positions and CFD quantities.
Incompress laminar steady flow past a cylinder with various shapes for its cross section is considered.
Network predicts the flow fields hundreds of times faster than our conventional CFD.
arXiv Detail & Related papers (2020-10-15T12:15:02Z) - Predicting the flow field in a U-bend with deep neural networks [0.0]
This paper describes a study based on computational fluid dynamics (CFD) and deep neural networks that focusing on predicting the flow field in differently distorted U-shaped pipes.
The main motivation of this work was to get an insight about the justification of the deep learning paradigm in hydrodynamic hull optimisation processes.
arXiv Detail & Related papers (2020-10-01T09:03:02Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - DeepCFD: Efficient Steady-State Laminar Flow Approximation with Deep
Convolutional Neural Networks [5.380828749672078]
DeepCFD is a convolutional neural network (CNN) based model that efficiently approximates solutions for the problem of non-uniform steady laminar flows.
Using DeepCFD, we found a speedup of up to 3 orders of magnitude compared to the standard CFD approach at a cost of low error rates.
arXiv Detail & Related papers (2020-04-19T12:00:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.