Simulating Continuum Mechanics with Multi-Scale Graph Neural Networks
- URL: http://arxiv.org/abs/2106.04900v1
- Date: Wed, 9 Jun 2021 08:37:38 GMT
- Title: Simulating Continuum Mechanics with Multi-Scale Graph Neural Networks
- Authors: Mario Lino, Chris Cantwell, Anil A. Bharath, Stathi Fotiadis
- Abstract summary: We introduce MultiScaleGNN, a network multi-scale neural graph model for learning to infer unsteady mechanics.
We show that the proposed model can generalise from uniform advection fields to high-gradient fields on complex domains at test time and infer long-term Navier-Stokes solutions within a range of Reynolds numbers.
- Score: 0.17205106391379021
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuum mechanics simulators, numerically solving one or more partial
differential equations, are essential tools in many areas of science and
engineering, but their performance often limits application in practice. Recent
modern machine learning approaches have demonstrated their ability to
accelerate spatio-temporal predictions, although, with only moderate accuracy
in comparison. Here we introduce MultiScaleGNN, a novel multi-scale graph
neural network model for learning to infer unsteady continuum mechanics.
MultiScaleGNN represents the physical domain as an unstructured set of nodes,
and it constructs one or more graphs, each of them encoding different scales of
spatial resolution. Successive learnt message passing between these graphs
improves the ability of GNNs to capture and forecast the system state in
problems encompassing a range of length scales. Using graph representations,
MultiScaleGNN can impose periodic boundary conditions as an inductive bias on
the edges in the graphs, and achieve independence to the nodes' positions. We
demonstrate this method on advection problems and incompressible fluid
dynamics. Our results show that the proposed model can generalise from uniform
advection fields to high-gradient fields on complex domains at test time and
infer long-term Navier-Stokes solutions within a range of Reynolds numbers.
Simulations obtained with MultiScaleGNN are between two and four orders of
magnitude faster than the ones on which it was trained.
Related papers
- PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
We propose a new graph learning approach, namely, Physics-encoded Message Passing Graph Network (PhyMPGN)
We incorporate a GNN into a numerical integrator to approximate the temporal marching of partialtemporal dynamics for a given PDE system.
PhyMPGN is capable of accurately predicting various types of operatortemporal dynamics on coarse unstructured meshes.
arXiv Detail & Related papers (2024-10-02T08:54:18Z) - Graph-based Multi-ODE Neural Networks for Spatio-Temporal Traffic
Forecasting [8.832864937330722]
Long-range traffic forecasting remains a challenging task due to the intricate and extensive-temporal correlations observed in traffic networks.
In this paper, we propose a architecture called Graph-based Multi-ODE Neural Networks (GRAM-ODE) which is designed with multiple connective ODE-GNN modules to learn better representations.
Our extensive set of experiments conducted on six real-world datasets demonstrate the superior performance of GRAM-ODE compared with state-of-the-art baselines.
arXiv Detail & Related papers (2023-05-30T02:10:42Z) - Graph Neural Network-based surrogate model for granular flows [2.153852088624324]
Granular flow dynamics is crucial for assessing various geotechnical risks, including landslides and debris flows.
Traditional continuum and discrete numerical methods are limited by their computational cost in simulating large-scale systems.
We develop a graph neural network-based simulator (GNS) that takes the current state of granular flow and predicts the next state using explicit integration by learning the local interaction laws.
arXiv Detail & Related papers (2023-05-09T07:28:12Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
implicit graph neural networks (GNNs) have been proposed to capture long-range dependencies in underlying graphs.
We introduce and justify two weaknesses of implicit GNNs: the constrained expressiveness due to their limited effective range for capturing long-range dependencies, and their lack of ability to capture multiscale information on graphs at multiple resolutions.
We propose a multiscale graph neural network with implicit layers (MGNNI) which is able to model multiscale structures on graphs and has an expanded effective range for capturing long-range dependencies.
arXiv Detail & Related papers (2022-10-15T18:18:55Z) - Towards Fast Simulation of Environmental Fluid Mechanics with
Multi-Scale Graph Neural Networks [0.0]
We introduce MultiScaleGNN, a novel multi-scale graph neural network model for learning to infer unsteady continuum mechanics.
We demonstrate this method on advection problems and incompressible fluid dynamics, both fundamental phenomena in oceanic and atmospheric processes.
Simulations obtained with MultiScaleGNN are between two and four orders of magnitude faster than those on which it was trained.
arXiv Detail & Related papers (2022-05-05T13:33:03Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
We learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer node representations.
We present a novel Hyperbolic Variational Graph Network, referred to as HVGNN.
In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach.
arXiv Detail & Related papers (2021-04-06T01:44:15Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
We first show that ResNets fail to be meaningful dynamical in this richer sense.
We then demonstrate that neural network models can learn to represent continuous dynamical systems.
We introduce ContinuousNet as a continuous-in-depth generalization of ResNet architectures.
arXiv Detail & Related papers (2020-08-05T22:54:09Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.