論文の概要: NeRFDeformer: NeRF Transformation from a Single View via 3D Scene Flows
- arxiv url: http://arxiv.org/abs/2406.10543v1
- Date: Sat, 15 Jun 2024 07:58:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 23:53:14.333267
- Title: NeRFDeformer: NeRF Transformation from a Single View via 3D Scene Flows
- Title(参考訳): NeRFデフォルマ:3次元シーンフローによる単一視点からのNeRF変換
- Authors: Zhenggang Tang, Zhongzheng Ren, Xiaoming Zhao, Bowen Wen, Jonathan Tremblay, Stan Birchfield, Alexander Schwing,
- Abstract要約: 本研究では,単一観測値に基づいてNeRF表現を自動的に修正する手法を提案する。
本手法は, 変形を3次元流れ, 特に剛性変換の重み付き線形ブレンディングとして定義する。
また,単一観測によるNeRFシーンの修正問題を探索するための新しいデータセットも導入した。
- 参考スコア(独自算出の注目度): 60.291277312569285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method for automatically modifying a NeRF representation based on a single observation of a non-rigid transformed version of the original scene. Our method defines the transformation as a 3D flow, specifically as a weighted linear blending of rigid transformations of 3D anchor points that are defined on the surface of the scene. In order to identify anchor points, we introduce a novel correspondence algorithm that first matches RGB-based pairs, then leverages multi-view information and 3D reprojection to robustly filter false positives in two steps. We also introduce a new dataset for exploring the problem of modifying a NeRF scene through a single observation. Our dataset ( https://github.com/nerfdeformer/nerfdeformer ) contains 113 synthetic scenes leveraging 47 3D assets. We show that our proposed method outperforms NeRF editing methods as well as diffusion-based methods, and we also explore different methods for filtering correspondences.
- Abstract(参考訳): 本研究では,オリジナルシーンの非剛性変換バージョンを単一観測し,NeRF表現を自動的に修正する手法を提案する。
本手法は3次元流れ,特に現場表面で定義される3次元アンカー点の剛性変換の重み付き線形ブレンディングとして変換を定義する。
アンカーポイントを特定するために、まずRGBベースのペアにマッチする新しい対応アルゴリズムを導入し、次に複数ビュー情報と3D再投影を利用して2ステップで偽陽性を頑健にフィルタリングする。
また,単一観測によるNeRFシーンの修正問題を探索するための新しいデータセットも導入した。
私たちのデータセット(https://github.com/nerfdeformer/nerfdeformer )には、47の3Dアセットを活用する113の合成シーンが含まれています。
提案手法は,NeRF編集法と拡散法とを比較検討し,対応をフィルタリングする異なる手法についても検討した。
関連論文リスト
- Style-NeRF2NeRF: 3D Style Transfer From Style-Aligned Multi-View Images [54.56070204172398]
本稿では,3次元シーンをスタイリングするための簡易かつ効果的なパイプラインを提案する。
我々は、スタイル整列画像-画像拡散モデルにより生成されたスタイリング画像を用いて、ソースNeRFモデルを精細化し、3Dスタイルの転送を行う。
本手法は,現実の3Dシーンに多彩な芸術的スタイルを,競争力のある品質で伝達できることを実証する。
論文 参考訳(メタデータ) (2024-06-19T09:36:18Z) - Consistent Mesh Diffusion [8.318075237885857]
UVパラメータ化による3Dメッシュを前提として,テキストプロンプトからテクスチャを生成する新しいアプローチを提案する。
当社のアプローチは、30メッシュを含むデータセット上で、メッシュ毎に約5分を要することを実証しています。
論文 参考訳(メタデータ) (2023-12-01T23:25:14Z) - Geometry Aware Field-to-field Transformations for 3D Semantic
Segmentation [48.307734886370014]
ニューラル・レージアンス・フィールド(NeRF)を利用した3次元セマンティック・セマンティック・セマンティック・セマンティック・セマンティクスの手法を提案する。
表面点雲に沿って特徴を抽出することにより,サンプル効率が高く3次元推論に導出しやすいシーンのコンパクトな表現を実現する。
論文 参考訳(メタデータ) (2023-10-08T11:48:19Z) - Registering Neural Radiance Fields as 3D Density Images [55.64859832225061]
我々は,様々な場面でトレーニングやテストが可能な,普遍的な事前学習型ニューラルネットワークを提案する。
我々は,グローバルアプローチとして,NeRFモデルを効果的に登録できることを実証した。
論文 参考訳(メタデータ) (2023-05-22T09:08:46Z) - NeRF-Loc: Visual Localization with Conditional Neural Radiance Field [25.319374695362267]
暗黙の3次元記述子と変換器を用いた2次元画像との直接マッチングに基づく新しい視覚的再局在法を提案する。
実験により,本手法は,複数のベンチマークにおいて,他の学習手法よりも高い局所化精度を実現することが示された。
論文 参考訳(メタデータ) (2023-04-17T03:53:02Z) - Instance Neural Radiance Field [62.152611795824185]
本稿では,最初の学習ベースNeRF3Dインスタンスセグメンテーションパイプラインについて述べる。
我々は、NeRFのサンプルボリューム特徴に基づいて、3Dプロポーザルベースのマスク予測ネットワークを採用する。
また、本手法は、そのような結果を純粋推論で最初に達成した手法の一つである。
論文 参考訳(メタデータ) (2023-04-10T05:49:24Z) - Implicit Ray-Transformers for Multi-view Remote Sensing Image
Segmentation [26.726658200149544]
スパースラベル付きRSシーンセマンティックセグメンテーションのためのインプリシティ・ニューラル表現(INR)に基づく「インプリシティ・レイ・トランスフォーマ(IRT)」を提案する。
提案手法は,2段階の学習プロセスを含む。第1段階では,リモートセンシングシーンの色と3次元構造を符号化するために,ニューラルネットワークを最適化する。
第2段階では、ニューラルネットワークの3D特徴と2Dテクスチャ特徴の関係を利用して、より優れた意味表現を学習するレイ変換器を設計する。
論文 参考訳(メタデータ) (2023-03-15T07:05:07Z) - PeRFception: Perception using Radiance Fields [72.99583614735545]
私たちは、PeRFceptionと呼ばれる知覚タスクのための、最初の大規模な暗黙的表現データセットを作成します。
元のデータセットからかなりのメモリ圧縮率 (96.4%) を示し、2D情報と3D情報の両方を統一形式で格納している。
この暗黙の形式を直接入力する分類とセグメンテーションモデルを構築し、画像の背景に過度に収まらないよう、新しい拡張手法を提案する。
論文 参考訳(メタデータ) (2022-08-24T13:32:46Z) - Geometric Correspondence Fields: Learned Differentiable Rendering for 3D
Pose Refinement in the Wild [96.09941542587865]
野生の任意のカテゴリのオブジェクトに対する微分可能レンダリングに基づく新しい3次元ポーズ精細化手法を提案する。
このようにして、3DモデルとRGB画像のオブジェクトを正確に整列し、3Dポーズ推定を大幅に改善する。
我々は、Pix3Dデータセットの挑戦に対するアプローチを評価し、複数のメトリクスにおける最先端の精錬手法と比較して、最大55%の改善を実現した。
論文 参考訳(メタデータ) (2020-07-17T12:34:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。