論文の概要: Facts-and-Feelings: Capturing both Objectivity and Subjectivity in Table-to-Text Generation
- arxiv url: http://arxiv.org/abs/2406.10560v1
- Date: Sat, 15 Jun 2024 08:41:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 23:53:14.309483
- Title: Facts-and-Feelings: Capturing both Objectivity and Subjectivity in Table-to-Text Generation
- Title(参考訳): Facts-and-Feelings:表-テキスト生成における客観性と主観性の両方をキャプチャする
- Authors: Tathagata Dey, Pushpak Bhattacharyya,
- Abstract要約: 私たちは3849のデータインスタンスを持つTa2TSデータセットを紹介します。
本稿では,線形化テーブル上でのシーケンス・ツー・シーケンスの微調整と,一般的な大言語モデルへのプロンプトを行う。
- 参考スコア(独自算出の注目度): 41.09752906121257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Table-to-text generation, a long-standing challenge in natural language generation, has remained unexplored through the lens of subjectivity. Subjectivity here encompasses the comprehension of information derived from the table that cannot be described solely by objective data. Given the absence of pre-existing datasets, we introduce the Ta2TS dataset with 3849 data instances. We perform the task of fine-tuning sequence-to-sequence models on the linearized tables and prompting on popular large language models. We analyze the results from a quantitative and qualitative perspective to ensure the capture of subjectivity and factual consistency. The analysis shows the fine-tuned LMs can perform close to the prompted LLMs. Both the models can capture the tabular data, generating texts with 85.15% BERTScore and 26.28% Meteor score. To the best of our knowledge, we provide the first-of-its-kind dataset on tables with multiple genres and subjectivity included and present the first comprehensive analysis and comparison of different LLM performances on this task.
- Abstract(参考訳): 自然言語生成における長年の課題であるテーブル・ツー・テキスト生成は、主観性のレンズを通して探索されていない。
ここでの主観性は、対象データだけでは説明できない表から得られる情報の理解を含んでいる。
既存のデータセットがないため、3849のデータインスタンスを持つTa2TSデータセットを導入します。
本稿では,線形化テーブル上でのシーケンス・ツー・シーケンスの微調整と,一般的な大言語モデルへのプロンプトを行う。
我々は、主観性と事実整合性の獲得を確実にするために、定量的かつ質的な視点から結果を分析する。
この分析は、微調整されたLMが誘導されたLSMに近い性能を発揮できることを示している。
どちらのモデルも表データのキャプチャが可能で、85.15%のBERTScoreと26.28%のMeteorスコアでテキストを生成する。
我々の知る限り、我々は複数のジャンルと主観性を含むテーブル上の第一種データセットを提供し、このタスクにおける様々なLLMパフォーマンスの包括的分析と比較を行った。
関連論文リスト
- FineCops-Ref: A new Dataset and Task for Fine-Grained Compositional Referring Expression Comprehension [10.482908189805872]
Referring Expression (REC) は言語理解能力、画像理解能力、言語と画像の接地能力を客観的に評価する重要なクロスモーダルタスクである。
我々は2つの重要な特徴を特徴とする新しいRECデータセットを構築した。
これには、既存のデータに基づいて微細な編集と生成によって作成された否定的なテキストと画像が含まれる。
論文 参考訳(メタデータ) (2024-09-23T06:56:51Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools [51.576974932743596]
大規模言語モデル(LLM)は、テキスト間の情報の集約を必要とするクエリではよく機能しないことが多い。
TACTには、1つ以上のテキストに散らばる縫合情報を要求する難しい命令が含まれている。
既存のテキストと関連するテーブルのデータセットを活用することで、このデータセットを構築します。
現代のLLMはいずれも,このデータセットでは性能が悪く,精度が38%以下であることが実証された。
論文 参考訳(メタデータ) (2024-06-05T20:32:56Z) - Automated Data Visualization from Natural Language via Large Language Models: An Exploratory Study [41.84915013818794]
The Natural Language to Visualization (NL2Vis) taskは、自然言語記述を接地テーブルの視覚表現に変換することを目的としている。
多くのディープラーニングベースのアプローチがNL2Vis向けに開発されているが、目に見えないデータベースや複数のテーブルにまたがるデータの視覚化には課題が続いている。
本稿では,Large Language Models (LLMs) の顕著な生成能力からインスピレーションを得て,その可能性を評価するための実証的研究を行う。
論文 参考訳(メタデータ) (2024-04-26T03:25:35Z) - Text2Analysis: A Benchmark of Table Question Answering with Advanced
Data Analysis and Unclear Queries [67.0083902913112]
高度な解析タスクを取り入れたText2Analysisベンチマークを開発した。
また,5つのイノベーティブかつ効果的なアノテーション手法を開発した。
3つの異なる指標を用いて5つの最先端モデルを評価する。
論文 参考訳(メタデータ) (2023-12-21T08:50:41Z) - HeLM: Highlighted Evidence augmented Language Model for Enhanced Table-to-Text Generation [7.69801337810352]
LLaMA2モデル上でパラメータ効率の良い微調整を行う。
我々のアプローチは、テーブル固有の行データを強調することにより、推論情報を入力に注入することである。
FetaQAデータセットとQTSummデータセットの両方で、我々のアプローチは最先端の結果を得た。
論文 参考訳(メタデータ) (2023-11-15T12:02:52Z) - QTSumm: Query-Focused Summarization over Tabular Data [58.62152746690958]
人々は主に、データ分析を行うか、特定の質問に答えるためにテーブルをコンサルティングします。
そこで本研究では,テキスト生成モデルに人間的な推論を行なわなければならない,クエリ中心のテーブル要約タスクを新たに定義する。
このタスクには,2,934テーブル上の7,111の人間注釈付きクエリ-サマリーペアを含む,QTSummという新しいベンチマークを導入する。
論文 参考訳(メタデータ) (2023-05-23T17:43:51Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
テーブルセマンティック解析のための効果的な事前学習手法GraPPaを提案する。
我々は、同期文脈自由文法を用いて、高自由度テーブル上に合成質問ペアを構築する。
実世界のデータを表現できるモデルの能力を維持するため、マスキング言語モデリングも含んでいる。
論文 参考訳(メタデータ) (2020-09-29T08:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。