Graph Neural Backdoor: Fundamentals, Methodologies, Applications, and Future Directions
- URL: http://arxiv.org/abs/2406.10573v1
- Date: Sat, 15 Jun 2024 09:23:46 GMT
- Title: Graph Neural Backdoor: Fundamentals, Methodologies, Applications, and Future Directions
- Authors: Xiao Yang, Gaolei Li, Jianhua Li,
- Abstract summary: Despite the boosts of GNN, recent research has empirically demonstrated its potential vulnerability to backdoor attacks.
This survey aims to explore the principles of graph backdoors, provide insights to defenders, and promote future security research.
- Score: 7.392996857661765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have significantly advanced various downstream graph-relevant tasks, encompassing recommender systems, molecular structure prediction, social media analysis, etc. Despite the boosts of GNN, recent research has empirically demonstrated its potential vulnerability to backdoor attacks, wherein adversaries employ triggers to poison input samples, inducing GNN to adversary-premeditated malicious outputs. This is typically due to the controlled training process, or the deployment of untrusted models, such as delegating model training to third-party service, leveraging external training sets, and employing pre-trained models from online sources. Although there's an ongoing increase in research on GNN backdoors, comprehensive investigation into this field is lacking. To bridge this gap, we propose the first survey dedicated to GNN backdoors. We begin by outlining the fundamental definition of GNN, followed by the detailed summarization and categorization of current GNN backdoor attacks and defenses based on their technical characteristics and application scenarios. Subsequently, the analysis of the applicability and use cases of GNN backdoors is undertaken. Finally, the exploration of potential research directions of GNN backdoors is presented. This survey aims to explore the principles of graph backdoors, provide insights to defenders, and promote future security research.
Related papers
- "No Matter What You Do": Purifying GNN Models via Backdoor Unlearning [33.07926413485209]
backdoor attacks in GNNs lie in the fact that the attacker modifies a portion of graph data by embedding triggers.
We present GCleaner, the first backdoor mitigation method on GNNs.
GCleaner can reduce the backdoor attack success rate to 10% with only 1% of clean data, and has almost negligible degradation in model performance.
arXiv Detail & Related papers (2024-10-02T06:30:49Z) - Rethinking Pruning for Backdoor Mitigation: An Optimization Perspective [19.564985801521814]
We propose an optimized Neuron Pruning (ONP) method combined with Graph Neural Network (GNN) and Reinforcement Learning (RL) to repair backdoor models.
With a small amount of clean data, ONP can effectively prune the backdoor neurons implanted by a set of backdoor attacks at the cost of negligible performance degradation.
arXiv Detail & Related papers (2024-05-28T01:59:06Z) - A backdoor attack against link prediction tasks with graph neural
networks [0.0]
Graph Neural Networks (GNNs) are a class of deep learning models capable of processing graph-structured data.
Recent studies have found that GNN models are vulnerable to backdoor attacks.
In this paper, we propose a backdoor attack against the link prediction tasks based on GNNs.
arXiv Detail & Related papers (2024-01-05T06:45:48Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
We introduce a groundbreaking approach to protect GNN models in Machine Learning from model-centric attacks.
Our approach includes a comprehensive verification schema for GNN's integrity, taking into account both transductive and inductive GNNs.
We propose a query-based verification technique, fortified with innovative node fingerprint generation algorithms.
arXiv Detail & Related papers (2023-12-13T03:17:05Z) - Trustworthy Graph Neural Networks: Aspects, Methods and Trends [115.84291569988748]
Graph neural networks (GNNs) have emerged as competent graph learning methods for diverse real-world scenarios.
Performance-oriented GNNs have exhibited potential adverse effects like vulnerability to adversarial attacks.
To avoid these unintentional harms, it is necessary to build competent GNNs characterised by trustworthiness.
arXiv Detail & Related papers (2022-05-16T02:21:09Z) - A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy,
Robustness, Fairness, and Explainability [59.80140875337769]
Graph Neural Networks (GNNs) have made rapid developments in the recent years.
GNNs can leak private information, are vulnerable to adversarial attacks, can inherit and magnify societal bias from training data.
This paper gives a comprehensive survey of GNNs in the computational aspects of privacy, robustness, fairness, and explainability.
arXiv Detail & Related papers (2022-04-18T21:41:07Z) - Backdoor Learning: A Survey [75.59571756777342]
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs)
Backdoor learning is an emerging and rapidly growing research area.
This paper presents the first comprehensive survey of this realm.
arXiv Detail & Related papers (2020-07-17T04:09:20Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Adversarial Attacks and Defenses on Graphs: A Review, A Tool and
Empirical Studies [73.39668293190019]
Adversary attacks can be easily fooled by small perturbation on the input.
Graph Neural Networks (GNNs) have been demonstrated to inherit this vulnerability.
In this survey, we categorize existing attacks and defenses, and review the corresponding state-of-the-art methods.
arXiv Detail & Related papers (2020-03-02T04:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.