MADE: Graph Backdoor Defense with Masked Unlearning
- URL: http://arxiv.org/abs/2411.18648v2
- Date: Tue, 31 Dec 2024 02:11:04 GMT
- Title: MADE: Graph Backdoor Defense with Masked Unlearning
- Authors: Xiao Lin, Mingjie Li, Yisen Wang,
- Abstract summary: Graph Neural Networks (GNNs) have garnered significant attention from researchers due to their outstanding performance in handling graph-related tasks.
Recent research has demonstrated that GNNs are vulnerable to backdoor attacks, implemented by injecting triggers into the training datasets.
This vulnerability poses significant security risks for applications of GNNs in sensitive domains, such as drug discovery.
- Score: 24.97718571096943
- License:
- Abstract: Graph Neural Networks (GNNs) have garnered significant attention from researchers due to their outstanding performance in handling graph-related tasks, such as social network analysis, protein design, and so on. Despite their widespread application, recent research has demonstrated that GNNs are vulnerable to backdoor attacks, implemented by injecting triggers into the training datasets. Trained on the poisoned data, GNNs will predict target labels when attaching trigger patterns to inputs. This vulnerability poses significant security risks for applications of GNNs in sensitive domains, such as drug discovery. While there has been extensive research into backdoor defenses for images, strategies to safeguard GNNs against such attacks remain underdeveloped. Furthermore, we point out that conventional backdoor defense methods designed for images cannot work well when directly implemented on graph data. In this paper, we first analyze the key difference between image backdoor and graph backdoor attacks. Then we tackle the graph defense problem by presenting a novel approach called MADE, which devises an adversarial mask generation mechanism that selectively preserves clean sub-graphs and further leverages masks on edge weights to eliminate the influence of triggers effectively. Extensive experiments across various graph classification tasks demonstrate the effectiveness of MADE in significantly reducing the attack success rate (ASR) while maintaining a high classification accuracy.
Related papers
- On the Robustness of Graph Reduction Against GNN Backdoor [9.377257547233919]
Graph Neural Networks (GNNs) are gaining popularity across various domains due to their effectiveness in learning graph-structured data.
backdoor poisoning attacks pose serious threats to real-world applications.
graph reduction techniques, including coarsening and sparsification, have emerged as effective methods for accelerating GNN training on large-scale graphs.
arXiv Detail & Related papers (2024-07-02T17:08:38Z) - Robustness-Inspired Defense Against Backdoor Attacks on Graph Neural Networks [30.82433380830665]
Graph Neural Networks (GNNs) have achieved promising results in tasks such as node classification and graph classification.
Recent studies reveal that GNNs are vulnerable to backdoor attacks, posing a significant threat to their real-world adoption.
We propose using random edge dropping to detect backdoors and theoretically show that it can efficiently distinguish poisoned nodes from clean ones.
arXiv Detail & Related papers (2024-06-14T08:46:26Z) - Rethinking Graph Backdoor Attacks: A Distribution-Preserving Perspective [33.35835060102069]
Graph Neural Networks (GNNs) have shown remarkable performance in various tasks.
Backdoor attack poisons the graph by attaching backdoor triggers and the target class label to a set of nodes in the training graph.
In this paper, we study a novel problem of unnoticeable graph backdoor attacks with in-distribution (ID) triggers.
arXiv Detail & Related papers (2024-05-17T13:09:39Z) - Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
Graph neural networks (GNNs) have been shown to be vulnerable to adversarial attacks.
We propose a novel attack method called Differentiable Graph Attack (DGA) to efficiently generate effective attacks.
Compared to the state-of-the-art, DGA achieves nearly equivalent attack performance with 6 times less training time and 11 times smaller GPU memory footprint.
arXiv Detail & Related papers (2023-08-29T20:14:42Z) - Unnoticeable Backdoor Attacks on Graph Neural Networks [29.941951380348435]
In particular, backdoor attack poisons the graph by attaching triggers and the target class label to a set of nodes in the training graph.
In this paper, we study a novel problem of unnoticeable graph backdoor attacks with limited attack budget.
arXiv Detail & Related papers (2023-02-11T01:50:58Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - A Hard Label Black-box Adversarial Attack Against Graph Neural Networks [25.081630882605985]
We conduct a systematic study on adversarial attacks against GNNs for graph classification via perturbing the graph structure.
We formulate our attack as an optimization problem, whose objective is to minimize the number of edges to be perturbed in a graph while maintaining the high attack success rate.
Our experimental results on three real-world datasets demonstrate that our attack can effectively attack representative GNNs for graph classification with less queries and perturbations.
arXiv Detail & Related papers (2021-08-21T14:01:34Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Backdoor Attacks to Graph Neural Networks [73.56867080030091]
We propose the first backdoor attack to graph neural networks (GNN)
In our backdoor attack, a GNN predicts an attacker-chosen target label for a testing graph once a predefined subgraph is injected to the testing graph.
Our empirical results show that our backdoor attacks are effective with a small impact on a GNN's prediction accuracy for clean testing graphs.
arXiv Detail & Related papers (2020-06-19T14:51:01Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs.
Recent studies show that GNNs are vulnerable to carefully-crafted perturbations, called adversarial attacks.
We propose a general framework Pro-GNN, which can jointly learn a structural graph and a robust graph neural network model.
arXiv Detail & Related papers (2020-05-20T17:07:05Z) - Adversarial Attacks and Defenses on Graphs: A Review, A Tool and
Empirical Studies [73.39668293190019]
Adversary attacks can be easily fooled by small perturbation on the input.
Graph Neural Networks (GNNs) have been demonstrated to inherit this vulnerability.
In this survey, we categorize existing attacks and defenses, and review the corresponding state-of-the-art methods.
arXiv Detail & Related papers (2020-03-02T04:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.