論文の概要: StrucText-Eval: Evaluating Large Language Model's Reasoning Ability in Structure-Rich Text
- arxiv url: http://arxiv.org/abs/2406.10621v3
- Date: Mon, 21 Oct 2024 11:06:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:15:08.518780
- Title: StrucText-Eval: Evaluating Large Language Model's Reasoning Ability in Structure-Rich Text
- Title(参考訳): StrucText-Eval:構造リッチテキストにおける大規模言語モデルの推論能力の評価
- Authors: Zhouhong Gu, Haoning Ye, Xingzhou Chen, Zeyang Zhou, Hongwei Feng, Yanghua Xiao,
- Abstract要約: 我々はStrucText-Evalという,構造化テキストによる大規模言語モデルの理解と推論の精度を評価するベンチマークを紹介した。
オープンソース LLM が標準データセットで74.9% の最大精度を達成する一方で、そのパフォーマンスはより難しいデータセットで45.8% に大幅に低下していることを示す。
対照的に、人間の参加者はStrucText-Eval-Hardで92.6%の精度に達し、複雑な構造情報を扱うLLMの現在の限界を強調している。
- 参考スコア(独自算出の注目度): 29.03935605732864
- License:
- Abstract: The effective utilization of structured data, integral to corporate data strategies, has been challenged by the rise of large language models (LLMs) capable of processing unstructured information. This shift prompts the question: can LLMs interpret structured data directly in its unstructured form? We propose an automatic evaluation data generation method for assessing LLMs' reasoning capabilities on structure-rich text to explore this. Our approach supports 8 structured languages and 29 tasks, generating data with adjustable complexity through controllable nesting and structural width. We introduce StrucText-Eval, a benchmark containing 5,800 pre-generated and annotated samples designed to evaluate how well LLMs understand and reason through structured text. StrucText-Eval is divided into two suites: a regular Test suite (3,712 samples) and a Test-Hard suite (2,088 samples), the latter emphasizing the gap between human and model performance on more complex tasks. Experimental results show that while open-source LLMs achieve a maximum accuracy of 74.9\% on the standard dataset, their performance drops significantly to 45.8\% on the harder dataset. In contrast, human participants reach an accuracy of 92.6\% on StrucText-Eval-Hard, highlighting LLMs' current limitations in handling intricate structural information. The benchmark and generation codes are open sourced in \url{https://github.com/MikeGu721/StrucText-Eval}
- Abstract(参考訳): 企業データ戦略に不可欠な構造化データの有効利用は、構造化されていない情報を処理できる大規模言語モデル(LLM)の台頭によって困難になってきた。
LLMは構造化データを直接非構造化形式で解釈できるのか?
本稿では,LLMの推論能力を評価するための自動評価データ生成手法を提案する。
我々のアプローチは8つの構造化言語と29のタスクをサポートし、制御可能なネストと構造幅によって、調整可能な複雑さを持つデータを生成する。
SrucText-Evalは、5,800の事前生成および注釈付きサンプルを含むベンチマークで、LLMが構造化されたテキストを通してどのように理解し、推論するかを評価する。
StrucText-Evalは、通常のTestスイート(3,712サンプル)とTest-Hardスイート(2,088サンプル)の2つのスイートに分かれている。
実験の結果、オープンソースのLCMは標準データセットで74.9\%の最大精度を達成しているが、その性能はより難しいデータセットで45.8\%に大幅に低下した。
対照的に、人間の参加者はStrucText-Eval-Hardで92.6\%の精度に達し、複雑な構造情報を扱うLLMの現在の限界を強調している。
ベンチマークと生成コードは \url{https://github.com/MikeGu721/StrucText-Eval} でオープンソース化されている。
関連論文リスト
- Struct-X: Enhancing Large Language Models Reasoning with Structured Data [38.558614152006975]
構造Xは5つの重要なフェーズを通して動作する:read-model-fill-reflect-reason'
構造化データをグラフ埋め込みを用いて位相空間にエンコードする。
行方不明のエンティティ情報を知識検索モジュールで埋める。
最後のフェーズでは、選択したトークンでトポロジネットワークを構築する。
論文 参考訳(メタデータ) (2024-07-17T13:06:25Z) - StructLM: Towards Building Generalist Models for Structured Knowledge Grounding [49.10029030628653]
大規模言語モデル(LLM)では、最先端(SoTA)モデルの背後にある構造化データラグを平均35%処理できる。
私たちは、MistralとCodeLlamaモデルファミリに基づいたStructLMと呼ばれる一連のモデルをトレーニングします。
我々のStructLMシリーズは、評価された18のデータセットのうち16のタスク固有モデルを超え、8つのSKGタスクに新しいSoTAパフォーマンスを確立する。
論文 参考訳(メタデータ) (2024-02-26T15:47:01Z) - A Simple but Effective Approach to Improve Structured Language Model
Output for Information Extraction [11.165093163378152]
大規模言語モデル(LLM)は、命令に従って非構造化自然言語を生成する際、印象的な能力を示した。
本稿では,その構造的テキスト生成能力を高めるために,効率的なG&O手法を提案する。
論文 参考訳(メタデータ) (2024-02-20T20:42:02Z) - Beyond Traditional Benchmarks: Analyzing Behaviors of Open LLMs on Data-to-Text Generation [0.0]
データ・トゥ・テキスト(D2T)生成タスクにおけるオープン・大規模言語モデル(LLM)の挙動を解析する。
オープン LLM は,Quintd で収集した共通フォーマットのデータから,ゼロショット設定で,ゆるやかで一貫性のあるテキストを生成することができる。
論文 参考訳(メタデータ) (2024-01-18T18:15:46Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data? [49.688233418425995]
Struc-Benchは、大きな言語モデル(LLM)を特徴とする包括的なベンチマークである。
Pスコア(Prompting Score)とHスコア(Heuristical Score)の2つの革新的な指標を提案する。
実験の結果,LLaMA-7Bに構造認識の微調整を適用すると,性能が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2023-09-16T11:31:58Z) - StructGPT: A General Framework for Large Language Model to Reason over
Structured Data [117.13986738340027]
我々は,構造化データに基づく質問応答タスクの解法として,emphIterative Reading-then-Reasoning(IRR)アプローチを開発した。
提案手法はChatGPTの性能を大幅に向上させ,全データの教師付きベースラインに対して同等のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-05-16T17:45:23Z) - One Embedder, Any Task: Instruction-Finetuned Text Embeddings [105.82772523968961]
INSTRUCTORはタスク命令のテキスト埋め込みを計算するための新しい方法である。
すべてのテキスト入力はユースケースを説明する指示と共に埋め込まれる。
InSTRUCTORを70の埋め込み評価タスクで評価する。
論文 参考訳(メタデータ) (2022-12-19T18:57:05Z) - Explaining Patterns in Data with Language Models via Interpretable
Autoprompting [143.4162028260874]
本稿では,データを説明する自然言語文字列を生成するアルゴリズムである,解釈可能なオートプロンプト(iPrompt)を提案する。
iPromptは、基盤となるデータセット記述を正確に見つけることで、意味のある洞察を得ることができる。
fMRIデータセットを用いた実験は、iPromptが科学的発見に役立つ可能性を示している。
論文 参考訳(メタデータ) (2022-10-04T18:32:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。