A GPU-accelerated Large-scale Simulator for Transportation System Optimization Benchmarking
- URL: http://arxiv.org/abs/2406.10661v2
- Date: Wed, 02 Oct 2024 06:43:58 GMT
- Title: A GPU-accelerated Large-scale Simulator for Transportation System Optimization Benchmarking
- Authors: Jun Zhang, Wenxuan Ao, Junbo Yan, Depeng Jin, Yong Li,
- Abstract summary: We propose the first open-source GPU-accelerated large-scale microscopic simulator for transportation system simulation and optimization.
The simulator can iterate at 84.09Hz, which achieves 88.92 times computational acceleration in the large-scale scenario with 2,464,950 vehicles.
We choose five representative scenarios and benchmark classical rule-based algorithms, reinforcement learning algorithms, and black-box optimization algorithms.
- Score: 23.04575933073716
- License:
- Abstract: With the development of artificial intelligence techniques, transportation system optimization is evolving from traditional methods relying on expert experience to simulation and learning-based decision and optimization methods. Learning-based optimization methods require extensive interactions with highly realistic microscopic traffic simulators. However, existing microscopic traffic simulators are inefficient in large-scale scenarios and thus fail to support the adoption of these methods in large-scale transportation system optimization scenarios. In addition, the optimization scenarios supported by existing simulators are limited, mainly focusing on the traffic signal control. To address these challenges, we propose the first open-source GPU-accelerated large-scale microscopic simulator for transportation system simulation and optimization. The simulator can iterate at 84.09Hz, which achieves 88.92 times computational acceleration in the large-scale scenario with 2,464,950 vehicles compared to the best baseline CityFlow. Besides, it achieves a more realistic average road speeds simulated on real datasets by adopting the IDM model as the car-following model and the randomized MOBIL model as the lane-changing model. Based on it, we implement a set of microscopic and macroscopic controllable objects and metrics provided by Python API to support typical transportation system optimization scenarios. We choose five representative scenarios and benchmark classical rule-based algorithms, reinforcement learning algorithms, and black-box optimization algorithms in four cities. These experiments effectively demonstrate the usability of the simulator for large-scale traffic system optimization. The code of the simulator is available at https://github.com/tsinghua-fib-lab/moss. We build an open-registration web platform available at https://moss.fiblab.net to support no-code trials.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - CityFlowER: An Efficient and Realistic Traffic Simulator with Embedded
Machine Learning Models [25.567208505574072]
CityFlowER is an advanced simulator for efficient and realistic city-wide traffic simulation.
It pre-embeds Machine Learning models within the simulator, eliminating the need for external API interactions.
It offers unparalleled flexibility and efficiency, particularly in large-scale simulations.
arXiv Detail & Related papers (2024-02-09T01:19:41Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - Surrogate Neural Networks for Efficient Simulation-based Trajectory
Planning Optimization [28.292234483886947]
This paper presents a novel methodology that uses surrogate models in the form of neural networks to reduce the computation time of simulation-based optimization of a reference trajectory.
We find a 74% better-performing reference trajectory compared to nominal, and the numerical results clearly show a substantial reduction in computation time for designing future trajectories.
arXiv Detail & Related papers (2023-03-30T15:44:30Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Online Planning in POMDPs with Self-Improving Simulators [17.722070992253638]
We learn online an approximate but much faster simulator that improves over time.
To plan reliably and efficiently while the approximate simulator is learning, we develop a method that adaptively decides which simulator to use for every simulation.
Experimental results in two large domains show that when integrated with POMCP, our approach allows to plan with improving efficiency over time.
arXiv Detail & Related papers (2022-01-27T09:41:59Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - Data-Driven Offline Optimization For Architecting Hardware Accelerators [89.68870139177785]
We develop a data-driven offline optimization method for designing hardware accelerators, dubbed PRIME.
PRIME improves performance upon state-of-the-art simulation-driven methods by about 1.54x and 1.20x, while considerably reducing the required total simulation time by 93% and 99%, respectively.
In addition, PRIME also architects effective accelerators for unseen applications in a zero-shot setting, outperforming simulation-based methods by 1.26x.
arXiv Detail & Related papers (2021-10-20T17:06:09Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Black-Box Optimization with Local Generative Surrogates [6.04055755718349]
In fields such as physics and engineering, many processes are modeled with non-differentiable simulators with intractable likelihoods.
We introduce the use of deep generative models to approximate the simulator in local neighborhoods of the parameter space.
In cases where the dependence of the simulator on the parameter space is constrained to a low dimensional submanifold, we observe that our method attains minima faster than baseline methods.
arXiv Detail & Related papers (2020-02-11T19:02:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.