Augmenting Biomedical Named Entity Recognition with General-domain Resources
- URL: http://arxiv.org/abs/2406.10671v3
- Date: Sun, 03 Nov 2024 14:42:13 GMT
- Title: Augmenting Biomedical Named Entity Recognition with General-domain Resources
- Authors: Yu Yin, Hyunjae Kim, Xiao Xiao, Chih Hsuan Wei, Jaewoo Kang, Zhiyong Lu, Hua Xu, Meng Fang, Qingyu Chen,
- Abstract summary: Training a neural network-based biomedical named entity recognition (BioNER) model usually requires extensive and costly human annotations.
We propose GERBERA, a simple-yet-effective method that utilized a general-domain NER dataset for training.
We systematically evaluated GERBERA on five datasets of eight entity types, collectively consisting of 81,410 instances.
- Score: 47.24727904076347
- License:
- Abstract: Training a neural network-based biomedical named entity recognition (BioNER) model usually requires extensive and costly human annotations. While several studies have employed multi-task learning with multiple BioNER datasets to reduce human effort, this approach does not consistently yield performance improvements and may introduce label ambiguity in different biomedical corpora. We aim to tackle those challenges through transfer learning from easily accessible resources with fewer concept overlaps with biomedical datasets. In this paper, we proposed GERBERA, a simple-yet-effective method that utilized a general-domain NER dataset for training. Specifically, we performed multi-task learning to train a pre-trained biomedical language model with both the target BioNER dataset and the general-domain dataset. Subsequently, we fine-tuned the models specifically for the BioNER dataset. We systematically evaluated GERBERA on five datasets of eight entity types, collectively consisting of 81,410 instances. Despite using fewer biomedical resources, our models demonstrated superior performance compared to baseline models trained with multiple additional BioNER datasets. Specifically, our models consistently outperformed the baselines in six out of eight entity types, achieving an average improvement of 0.9% over the best baseline performance across eight biomedical entity types sourced from five different corpora. Our method was especially effective in amplifying performance on BioNER datasets characterized by limited data, with a 4.7% improvement in F1 scores on the JNLPBA-RNA dataset.
Related papers
- BMRetriever: Tuning Large Language Models as Better Biomedical Text Retrievers [48.21255861863282]
BMRetriever is a series of dense retrievers for enhancing biomedical retrieval.
BMRetriever exhibits strong parameter efficiency, with the 410M variant outperforming baselines up to 11.7 times larger.
arXiv Detail & Related papers (2024-04-29T05:40:08Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Improving Biomedical Entity Linking with Retrieval-enhanced Learning [53.24726622142558]
$k$NN-BioEL provides a BioEL model with the ability to reference similar instances from the entire training corpus as clues for prediction.
We show that $k$NN-BioEL outperforms state-of-the-art baselines on several datasets.
arXiv Detail & Related papers (2023-12-15T14:04:23Z) - BioREx: Improving Biomedical Relation Extraction by Leveraging
Heterogeneous Datasets [7.7587371896752595]
Biomedical relation extraction (RE) is a central task in biomedical natural language processing (NLP) research.
We present a novel framework for systematically addressing the data heterogeneity of individual datasets and combining them into a large dataset.
Our evaluation shows that BioREx achieves significantly higher performance than the benchmark system trained on the individual dataset.
arXiv Detail & Related papers (2023-06-19T22:48:18Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z) - From Zero to Hero: Harnessing Transformers for Biomedical Named Entity Recognition in Zero- and Few-shot Contexts [0.0]
This paper proposes a method for zero- and few-shot NER in the biomedical domain.
We have achieved average F1 scores of 35.44% for zero-shot NER, 50.10% for one-shot NER, 69.94% for 10-shot NER, and 79.51% for 100-shot NER on 9 diverse evaluated biomedical entities.
arXiv Detail & Related papers (2023-05-05T12:14:22Z) - BioRED: A Comprehensive Biomedical Relation Extraction Dataset [6.915371362219944]
We present BioRED, a first-of-its-kind biomedical RE corpus with multiple entity types and relation pairs.
We label each relation as describing either a novel finding or previously known background knowledge, enabling automated algorithms to differentiate between novel and background information.
Our results show that while existing approaches can reach high performance on the NER task, there is much room for improvement for the RE task.
arXiv Detail & Related papers (2022-04-08T19:23:49Z) - BioADAPT-MRC: Adversarial Learning-based Domain Adaptation Improves
Biomedical Machine Reading Comprehension Task [4.837365865245979]
We present an adversarial learning-based domain adaptation framework for the biomedical machine reading comprehension task.
BioADAPT-MRC is a neural network-based method to address the discrepancies in the marginal distributions between the general and biomedical domain datasets.
arXiv Detail & Related papers (2022-02-26T16:14:27Z) - Fine-Tuning Large Neural Language Models for Biomedical Natural Language
Processing [55.52858954615655]
We conduct a systematic study on fine-tuning stability in biomedical NLP.
We show that finetuning performance may be sensitive to pretraining settings, especially in low-resource domains.
We show that these techniques can substantially improve fine-tuning performance for lowresource biomedical NLP applications.
arXiv Detail & Related papers (2021-12-15T04:20:35Z) - BioALBERT: A Simple and Effective Pre-trained Language Model for
Biomedical Named Entity Recognition [9.05154470433578]
Existing BioNER approaches often neglect these issues and directly adopt the state-of-the-art (SOTA) models.
We propose biomedical ALBERT, an effective domain-specific language model trained on large-scale biomedical corpora.
arXiv Detail & Related papers (2020-09-19T12:58:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.